

Flameproof Motors

Electric Motors

A Regal Brand

REGAL

Flameproof Motors

A Regal Brand

REGAL

Electric motors

Flameproof
Flameproof with brake
Flameproof for mines
Non sparking
Dust proof
Gas + Dust

Frame size 63 ÷ 315

ITALIANO INDICE

		agina			Pagina
0	Introduzione	8	3.	Caratteristiche elettriche	
0.1	Unità di misura del SI ed equivalenze	8	3.1	Condizioni nominali di esercizio	3
0.2	Formule di comune utilizzo	9	3.2	Rendimento e fattore di potenza a carico parziale	3
0.3	Norme e specifiche		3.3	Isolamento e sovratemperarura	3
0.4	Protezione contro le esplosioni nelle zone pericolose		3.4	Tipo di servizio	3′
			3.5	Schemi di collegamento	
1.	Informazioni generali	10			
1.1	Gamma motori	16	3.6	Schemi di collegamento freno	
1.2	Caratteristiche principali comuni	18	3.7	Avviamenti orari consentiti (Frenate per ora)	
1.3	Principali opzioni	18	3.8	Marcatura dei morsetti ausiliari	3 [.]
1.4	Identificazione della sigla		3.9	Sistemi di protezione	3 [.]
2.	Caratteristiche meccaniche		3 10	Motori azionati da variatore elettronico di freguenza	
2.1	Installazione ed applicazioni		4.	Dati nominali	
	Versione per le basse temperature e per la prevenzione della	20			
2.2		00	4.1	Motori trifase, 1 velocità	
	condensa		4.2	Motori trifase, 1 velocità IE2	
2.3	Materiali, verniciatura e targa	21	4.3	Motori trifase, 2 velocità, (coppia costante)	
2.4	Sporgenze d'albero, bilanciatura, vibrazioni, rumorosità e		4.4	Motori trifase, 2 velocità, (coppia quadratica)	179
	accoppiamento	23	4.5	Motori monofase, 1 velocità	
2.5	Freno dei motori		4.6	Motori trifase con freno, 1 o 2 velocità	
	Cuscinetti				
	Carichi radiali ammissibili sull'albero con cuscinetti standard		4.7	Motori alimentati da inverter	
			5.	Dimensioni d'ingombro e forme costruttive	
	Carico assiale limite sull'albero con cuscinetti standard		5.1	Forme costruttive	
2.9	Scatola morsettiera		5.2	Dimensioni d'ingombro motori standard e per miniera	19
2.10	Posizione della scatola morsettiera e morsetti	30	5.3	Dimensioni d'ingombro motori con freno	
2.11	Entrate cavi	30	6.	Parti di ricambio	20
			٥.	Turi di Hodinbio	20
EM	GLISH CONTENTS				
EIN	CONTENTS				
		Page			Page
0.	Introduction	40	3.	Electrical design	6
0.1	SI units and conversion equations	40	3.1	Standard operating conditions	6
	Engineering formulae for motor drives		3.2	Efficiency and power factor at partial load	
	Standards and specifications		3.3	Insulation and temperature rise	
			3.4		
	Protection against explosions in dangerous areas			Duty types	
1.	General informations		3.5	Connecting diagrams	
1.1	Range of motors		3.6	Brake connection diagrams	
1.2	Common main characteristics	50	3.7	Hourly start-ups allowed (Braking: n° per hour)	
1.3	Main options	50	3.8	Additional terminals marking	69
1.4	Nomenclature	51	3.9	Protection devices	6
2.	Design features		3 10	Frequency converter driven motors	
	Installation and applications		4.	Performance data	
	Low temperature version and anti-condensation heating		4.1	Three-phase motors, 1 speed	
	Materials, painting and nameplate	53	4.2	Three-phase motors, 1 speed IE2	
2.4	Shaft ends, balancing, vibrations, noise level coupling and		4.3	Three-phase motors, 2 speeds, (constant torque)	
	belt drives	55	4.4	Three-phase motors, 2 speeds, (quadratic torque)	179
2.5	Brake motors	55	4.5	Single-phase motors, 1 speed	183
2.6	Bearing system	57	4.6	Three-phase motors with brake, 1 or 2 speeds	
	Permissible radial loads on the shaft with standard bearings		4.7	Motors energized by inverter	
	Permissible axial load on the shaft with standard bearings		5.	Overall dimensions and mounting arrangements	
	Terminal box		5.1		
				Mounting arrangements	
	Position of terminal box and terminals		5.2	Overall dimensions of standard and mining version motors	
2.11	Cable-entries	62	5.3	Overall dimensions of motors with brakes	
			6.	Spare parts	20
	0011111100				
FRA	INÇAIS SOMMAIRE				
		Page			Pag
0.	Introduction		3.	Caractéristiques électriques	
0.1	Unités de mesure du SI et équivalences			Conditions nominales d'exploitation	
			3.1		
	Formules d'usage commun		3.2	Rendement et facteur de puissance à différentes charges	
	Normes et spécifications		3.3	Isolation et température d'échauffement	96
0.4	Protection contre les explosions dans les zones dangereuses	75	3.4	Différents régimes d'utilisation	9
1.	Informations générales	80	3.5	Schémas de branchement	99
1.1	Gamme de moteurs	80	3.6	Schémas de raccordement du frein	
1.2	Principales caractéristiques communes		3.7	Démarrages horaires autorisés (Freinages par heure)	
1.3	Options principales		3.8	Identification des bornes pour les accessoires	
1.4	Identification de la référence commerciale		3.9	Systèmes de protection	
2.	Caractéristiques mécaniques			Moteurs alimentés par un variateur électronique de fréquence	
2.1	Installation et applications	84	4.	Données nominales	
2.2	Version pour basses températures et pour la prévention de la		4.1	Moteurs triphasés, 1 vitesse	
	condensation	84	4.2	Moteurs triphasés, 1 vitesse IE2	17
2.3	Matériaux, peinture et plaque signalétique		4.3	Moteurs triphasés, 2 vitesses, (couple constant)	
2.4	Bout d'arbre, équilibrage, vibrations, bruit et accouplement		4.4	Moteurs triphasés, 2 vitesses, (couple quadratique)	
2.5	Frein des moteurs				
			4.5	Moteurs monophasés, 1 vitesse	
2.6	Roulements	o9	4.6	Moteurs triphasés avec frein, 1 ou 2 vitesses	
2.7	Charges radiales admissibles sur l'arbre avec roulements		4.7	Moteurs alimentés par variateur	
	standards		5.	Dimensions et formes de construction	
2.8	Charge axiale limite sur l'arbre avec roulements standards	92	5.1	Formes de construction	19
2.9	Boîte à bornes		5.2	Dimensions d'encombrement des moteurs standard et pour m	nine 19
	Position de la boîte à bornes et des bornes		5.3	Dimensions d'encombrement des moteurs à frein	
	Entrées de câbles		6.	Pièces détachées	
		О т	٠.		

Electric motors

0.1 SI units and conversion equations

Table 0A

Description		SI		Conversion equations
	Formular symbols	Unit symbol	Unit name	
Distance Area Volume	L A V	m m² m³	metre	1 m³ = 1000 dm³ 1 dm³ = 1I
Angle in one plane	α, β, γ	rad	radian	$1^{\circ} = \frac{\pi}{180}$ rad $1' = 1^{\circ}/60$ 1'' = 1'/60
Time Frequency	t f	s Hz	second Hertz	1 Hz = 1/s
Speed Velocity Angular velocity	n ν ω	1/min m/s rad/s		$1 \text{ km/h} = \frac{1}{3.6} \text{ m/s}$
Acceleration Angular acceleration	<i>a</i> α	m/s ² rad/s ²		
Mass Density	<i>m</i> ρ	kg kg/m³	kilogram	
Force	F p	N	Newton	1N = 1kg · 1 m/s² 9.81 N = 1 kgf
Pressure Mechanical stress	σ	Pa = N/m ² N/mm ²	Pascal	9.81 · 10 ⁴ N/m ² = 1kgf/cm ² 9.81 N/mm ² = 1 kgf/mm ²
Work done Energy Thermal quantity	W W Q	J = Nm	Joule	9.81 Nm = 1 kgfm 4187 J = 1 kcal 1 kWh = 3.6 x 10 ⁶ J
Torque	М	Nm		9.81 Nm = 1 kgfm 1 Nm = 0.102 kgfm
Power	P	W = J/s = Nm/s	Watt	735.5 W = 1 hp
Moment of inertia	J	kg m²		9.81 kg m ² = 1 kpms ² PD2 = 4 J
Dynamic viscosity Kinematic viscosity	ην	Pa·s m²/s		10 ⁻¹ Pa · s = 1 P (Poise) 10 ⁻⁴ m ² /s = 1 St (Stokes)
Electric current Electric voltage Electric resistance Electric conductivity Electric capacity Charge	I U R G C	Α V Ω S F C	Ampere Volt Ohm Siemens Faraday Coulomb	1 A = 1 W/V = 1 V/ Ω 1 V = 1 W/A 1 Ω = 1 V/A = 1/S 1 S = 1/ Ω 1 F = 1 C/V 1 C = 1 A · s
Inductance Magnetic flux density Magnetic field strength	L B H	H T A/m	Henry Tesla	1 H = 1 Vs/A 1 T = 1 Wb/m ²
Magnetic flux Temperature difference	Φ <i>T</i>	Wb K	Weber Kelvin	1 Wb = 1 V · s 0 K = - 273.15 °C
	ϑ	°C	TOWN	011 270.10 0

Introduction 0.

0.2 Engineering formulae for motor drives

Power (3-phase motors)

 P_1 = power input = $U \cdot I \cdot \cos \varphi \cdot \sqrt{3} \cdot 10^{-3} \text{ [kW]}$ = power output = $P1 \cdot \eta [kW]$ P_{2}

Where:

U = voltage [V] = current [1] $\cos \varphi = \text{power factor}$ = efficiency

Power requirements of some applications

Lifting:

$$P = \frac{m \cdot v}{\eta} \cdot 9.81 \cdot 10^{-3} \, [kW]$$

Rotation:

$$P = \frac{M \cdot n}{9550 \cdot \eta} [kW]$$

Fan and pump drives:

$$P = \frac{H \cdot Q}{\eta} \quad [W]$$

Where:

= power [kW] Ρ m = mass [kg] = speed [m/s] ٧ = rotational speed [min-1] n = efficiency η

= torque [Nm] Μ = output [m3/s] Q = head [N/m²]

Torque from motor power

$$M = 9550 \cdot \frac{P_2}{n} [Nm]$$

Where:

 P_2 = motor output [kW] 'n = motor speed

Conversion of torque for step-up and step-down speed ratios:

$$\mathsf{M}_2 = \frac{\mathsf{M}_1 \cdot \mathsf{n}_1}{\mathsf{n}_2}$$

Where:

= motor speed [min-1] М₁ = motor torque at n₁ [Nm] = speed of load [min-1] M_2 = torque of load at n₂ [Nm]

Moment of Inertia J

Moment of Inertia of a cylindrical flywheel:

$$J = \frac{md^2}{8}$$

Where:

= mass [kg]

= flywheel diameter [m]

Effective moment of inertia on the motor of a linearly moved load:

$$J = 91.2 \cdot m \cdot \left(\frac{v}{n}\right)^2$$

Where:

= mass [kg] m = velocity [m/s] ٧ = motor speed [min-1] n

Conversions of moments of inertia for step-up or step-down speed ratio:

$$J_2 = J1 \cdot \left(\frac{n_1}{n_2}\right)^2$$

Where:

= motor speed n_1

= moment of inertia at n₁ J_1

= speed of load n_2

= moment of inertia of load

Factor of Inertia FI

$$FI = \frac{J_{mot} + J_{load}}{J_{mot}}$$

Where:

= moment of inertia of motor J_{mot} = moment of inertia of load

Starting time t_a

$$t_{a} = \frac{FI \cdot J_{mot} \cdot n}{9.55 \cdot (M_{mot} - M_{load})} [s]$$

Where:

= Factor of inertia FI

 J_{mot} = moment of inertia of motor [kgm₂]

= motor speed [min-1]

 M_{mot} = motor torque

during starting (mean) [Nm]

 M_{load} = counter torque of load during starting (mean) [Nm]

Speed

The no-load speed is virtually the same as the synchronous speed. The synchronous speed of the motor is calculated as follow:

$$n_s = 120 \cdot f/p [min^{-1}]$$

Where:

= frequency [Hz] = number of pole

The synchronous speed is reduced by the slip (S) to the rated speed:

$$n_n = n_s \cdot (1-S) [min^{-1}]$$

0.3 Standards and specifications

Flameproof motors conform to the following standards and specifications:

Table 0B

Title	INTERNATIONAL	CENELEC
Electrical rotating machines/rated operation and characteristic data	IEC 60034-1	EN 60034-1
Methods for determining losses and efficiency of rotating electrical machines	IEC 60034-2	EN 60034-2
Protection types rotating electrical machines	IEC 60034-5	EN 60034-5
Cooling methods of rotating electrical machines	IEC 60034-6	EN 60034-6
Construction types of rotating electrical machines	IEC 60034-7	EN 60034-7
Terminal markings and direction of rotation for electrical machines	IEC 60034-8	EN 60034-8
Noise emission, limit values	IEC 60034-9	EN 60034-9
Start-up behaviour of squirrel-cage motors at 50 Hz up to 660V	IEC 60034-12	EN 60034-12
Vibration severity of rotating electrical machines	IEC 60034-14	EN 60034-14
Protection level provided by enclosures for electrical equipment against mechanical impact (Code IK)	IEC 60068-1 IEC 60068-2-75	EN 60068-1 EN 60068-2-75
Fixing dimensions and outputs for IM B3	IEC 60072	EN 60072
Fixing dimensions and outputs for IM B5, IM B14	IEC 60072	EN 60072
Cylindrical shaft ends for electrical machines	IEC 60072	EN 60072
Electrical equipment for hazardous areas General provisions	IEC 60079-0	EN 60079-0
Electrical equipment for hazardous areas Flame-proof enclosure "d"	IEC 60079-1	EN 60079-1
Electrical equipment for hazardous areas Increased safety "e"	IEC 60079-7	EN 60079-7
Equipment with protection type "t" for use in the presence of flammable dusts	IEC 60079-31	EN 60079-31

0.4 Protection against explosions in dangerous areas

0.4.1 Types protection

The use of an electrical apparatus in potentially explosive atmospheres is quite usual today.

This equipment has to be manufactured in such a way that there is no risk of explosion.

An explosion occurs when of the three following conditions happen:

- presence of a potentially explosive atmosphere;
- possibility of transmission of the explosion;
- existence of an ignition source.

The recognized types of protection eliminate one of these conditions and thus make an explosion impossible.

Fig. 0A - Specific marking for protection against explosions - Directive 94/9/EC.

Protection methods for GAS

Two types of protection prevent the presence of a potentially explosive atmosphere inside the electrical apparatus:

- oil immersion (safety "o");
- pressurized apparatus (safety "p"). Two types of protection make the transmission of an internal explosion to the potentially explosive atmosphere surrounding the electrical apparatus impossible:
- sand filling (safety "q");
- flameproof enclosure (safety "d"). Lastly, three types of protection eliminate any source of ignition, such as sparks, overheating, etc...:
- increased safety (safety "e");
- intrinsic safety (safety "i");
- protection "n" (restricted to zone 2).

Protection method for flammable dusts

For flammable dusts, only one method of protection is provided for:

 housing which prevents the infiltration of dust and surface temperature limitation (protection type "t").

In practice only five of these eight methods of protection are applicable to the electric motor:

- pressurized apparatus (symbol Ex p);
- flameproof enclosure (symbol Ex d);
- increased safety (symbol Ex e);
- non sparking protection (symbol Ex n);
- protection by a housing (symbol Ex t).

Electric motors have another method of protection for gas (symbol Ex de) which is a combination of:

- flameproof enclosure "d" for motor frame;
- increased safety "e" for terminal box.

0.4.2 Dangerous areas and zones

Dangerous areas include any area in which explosive atmospheres may occur under specific conditions.

An explosive atmosphere is a mixture of air and combustible gases, vapours, fumes or dust under atmospheric conditions where combustion expands itself (explosion) after ignition.

Only local authorities can classify hazardous areas.

The users shall classify the hazardous areas as indicated in the European directive 1999/92/EC under their own responsibility. International standards IEC 61241-10 provide instructions on how to classify the hazardous areas in relation to the chemical nature, to the physical characteristics and to the amount of substances used and based on the frequency and period of time in which an explosive mix may develop.

Fig. 0B - Warning sign for areas subject to the risk of explosion - Directive 99/92/EC

Zones susceptible to gas

When the hazard is due to the presence of gas, vapours or mists of flammable substances, the European directive 1999/92/EC envisages a classification in three zones defined as follows:

Zone 0 - Areas constantly susceptible to an explosive atmosphere, or for long periods of time. Power equipment with double insulation must be installed in this area.

Zone 1 - Areas where an explosive atmosphere is likely to develop during normal conditions.

Flameproof electric motors or motors with added protection means can be installed in this zone (for the latter, restrictions by the standards apply).

Zone 2 - Areas rarely susceptible to an explosive atmosphere and for a short period of time.

Flameproof motors or motors with added protection can be installed in this zone, as well as non-sparking motors.

Zones susceptible to combustible dust

When the hazard is due to the presence of combustible dust, the European directive 1999/92/EC envisages a classification in three zones defined as follows:

Zone 20 - Areas constantly susceptible to an explosive atmosphere, or for long periods of time.

Power apparatus cannot be installed in this zone.

Zone 21 - Areas where an explosive atmosphere is likely to develop during normal conditions.

Electric motors certified in compliance with the ATEX directive with IP6x protection rating can be installed in this zone

Zone 22 - Areas rarely susceptible to an explosive atmosphere, and only for a short period of time. Depending on the type of dust also in zone 22 it may be necessary to have IP6x construction (see 0.4.4).

Table 0C - Dangerous areas classified into zones

Usage area in the presence of GAS	Usage area in the presence of COMBUSTIBLE DUSTS	Hazardous level of the operational ZONE
Zone 0	Zone 20	Explosive atmosphere ALWAYS PRESENT
Zone 1	Zone 21	PROBABLE explosive atmosphere
Zone 2	Zone 22	Explosive atmosphere UNLIKELY

0.4.3 Apparatus classification

The ATEX 94/9/EC European Directive classifies equipment into three categories, with differing protection levels, related to the protection guaranteed.

NOTE: Equipment of higher categories can also be installed instead of those of a lower category.

Table 0D - Equipment categories

PROTECTION LEVEL	MINE	SURI	FACE
guaranteed by the equipment Category	Category	GAS Category	COMBUSTIBLE DUST Category
Very high	M1	1G	1D
High	M2	2G	2D
Normal	not provided for	3G	3D

0.4.4 Enclosure groups

The standards classify electrical equipment into two groups.

Group I: electric apparatus to be installed in mines or galleries susceptible to firedamp or coal dust.

Group II: electric apparatus to be installed in surface plants susceptible to other explosive atmospheres.

The housings for equipment to be used at the surface in the presence of gas, with protection method "d" (explosion proof), are in turn subdivided into three sub-groups depending on the flammable substances for which they are suitable:

Group IIA, Group IIB, Group IIC.

A motor that belongs to a certain enclosure group is also suitable for lower enclosure groups: a motor in group IIB is also suitable for group IIA; a motor in group IIC is also suitable for group IIA and IIB.

The housings for equipment to be used in atmospheres containing flammable dust, with protection method "t", are separated into three sub-groups depending on the type of dust:

IIIA: flammable particles IIIB: non-conducting dust IIIC: conducting dust

Note: for the IIIC group and also for installation in zone 22 a minimum protection level of IP6x is necessary.

0.4.5 Temperature classes (for gas atmospheres)

The electrical apparatus is classified into 6 classes according to the maximum surface temperatures.

The maximum surface temperature is the highest temperature which is attained in service under the conditions described in the standards, by any part of the electrical apparatus, which, could ignite the surrounding atmosphere.

For electric motors this is:

- the temperature of the outside surface of the enclosure for "d" and "p" protection modes;
- the temperature of any internal or external point for type of protection "e" or "n".

Table 0E

Ignition temperature of medium relative to limit temperature	Temperature class	Maximum surface temperature of electrical equipment including 40°C ambient temperature	
[°C]		[°C]	[°F]
over 450	T1	450	842
from 300 to 450	T 2	300	572
from 200 to 300	Т3	200	392
from 135 to 200	T 4	135	275
from 100 to 135	T 5	100	212
from 85 to 100	Т 6	85	185

0.4.6 Combustion temperatures of gases, vapours and groups

Combustible gases and vapours are divided into classes according to their ignition temperature and into groups according to their explosive capacity.

Markings on motors and other electrical equipment with the symbols used to indicate the protection mode, the enclosure group, and the temperature class, indicate the zone in which such equipment can be installed.

The indications contained in table 0F are shown only as an example.

Classification of the substances is not the responsibility of the supplier of the equipment.

Responsibility for the choice of equipment

Table 0F - Classification of the more common combustible gases and vapours according to temperature class and group

lies with the user.

Group	Temperature classes							
2 2 d. p	T 1	T 2	Т3	T 4	T 5	T 6		
I	Methane (firedamp)							
IIA	Acetic acid Acetone Ammonia Benzole Benzene Butanone Carbon monoxide Ethane Ethyl acetate Ethyl Chloride Methane Methanol Methyl acetate Methyl alcohol Methyl Chloride Naphtalene Propane Toluene Xylene	Acetic anhydride I amyl acetate n butane n butyl alcohol Amylic alcohol Butyl acetate Cyclohexanon Ethyl alcohol Iso butylic alcohol Liquefied gas Natural gas Propyl acetate	Cyclohexane Cyclohexanol Decane Diesel fuels Gasoline Heating oil Heptane Hexane Jet fuels Pentane Petroleum*	Acetaldehyde Ether				
IIB	Coke-oven gas Water gas (carburetted)	1,3- butadiene Ethylene Ethylbenzene Ethylene oxide	Hydrogen sulphide Isoprene Petroleum*	Ethyl ether				
IIC	Hydrogen	Acetylene				Carbon disulphide Ethyl nitrate		

^{*}depending on composition

0.4.7 Temperature for atmospheres with combustible dusts

The flash point of the dust must be taken into account in providing protection against flammable dust, in both the cloud form and in layers.

The surface temperature of the enclosure indicated on the motor nameplate must be less than the reference ignition temperature. The reference temperature is the lowest between the two values thus calculated:

TS1 = 2/3 Tcl (Tcl = ignition temperature of the cloud of dust)

TS2 = T5mm – 75K (T5mm = ignition temperature of a 5mm layer of dust). Tamm = lowest between TS1 and TS2.

Table 0G - Calculation of the flash points for combustible dusts

Dust ignition temperature	Cloud Tcl	Layer T5mm			
Safety temperature	Ts1 = 2/3 Tcl	Ts2 = T5mm - 75K			
Maximum surface temperature	Tamm = lowest between Ts1 and Ts2				
Surface temperature of the motor ≤ Tamm					

The surface temperature class is expressed as degrees Celsius, the manufacturer determines the temperature class depending on the thermal characteristics of its own product. The temperature classes for the Cemp product are as follows:

T150°C - T135°C - T125°C - T100°C - T85°C.

The indications contained in table 0H are given only by way of example. Classification of the substances is not the responsibility of the supplier of the equipment.

Responsibility for the choice of equipment lies with the user.

Table 0H - Examples of flash points for combustible dusts

	Cloud [°C]	Layer [°C]
Aluminium	590	>450
Carbon dust	380	225
Flour	490	340
Wheat dust	510	300
Methylcellulose	420	320
Phenolic resin	530	>450
Polyethylene	420	melting
PVC	700	>450
Soot	810	570
Starch	460	435
Sugar	490	460

irce SIRA Ltd

0.4.8 Level of protection for the equipment (EPL, equipment protection level)

In accordance with standard IEC EN 60079-0 the marking of equipment to be used in a potentially explosive atmosphere must also have the suffix EPL.

EPL is defined as the level of protection assigned to electrical equipment based on the probability of it becoming a source of ignition.

The EPL also makes it possible to distinguish between the different explosive atmospheres.

The first letter makes the following distinctions:

M - for mining

G - for gas

D - for dust

The second letter gives information on the probability of becoming a source of ignition:

- a "very high" protection level (guarantees safety in normal operation, during foreseeable malfunctions and when subject to rare cases of malfunction);
- b "high" protection level (guarantees safety in normal operation and when subject to foreseeable malfunctions);
- c "increased" protection level (it is not a source of ignition during normal operation and has some additional protection measures to ensure that it remains an inactive source of ignition in events occurring regularly).

0.4.9 Choice of safety-electric motor

The connection between danger zones and the categories of equipment to be used is defined in Directive 1999/92/EC.

The specific construction standards for the protection modes (e.g. Ex d) also define the motor category that can be obtained by applying the standards (e.g. 2G).

Table 0I - Choosing the protection mode for zones in which gas is present

Explosive Atmosphere	Danger Zone	Protection guaranteed by Equipment	Motor Category	Protection Mode
ALWAYS PRESENT	0	Very High	1G	IEC EN 60079-26
PROBABLE	1	High	2G	Ex d Ex de Ex e
IMPROBABLE	2	Normal	3G	Ex nA

Table 0L - Choice of protection mode for areas where combustible dust is present

Explosive Atmosphere	Danger Zone	Protection guaranteed by Equipment	Motor Category	Protection Mode
ALWAYS PRESENT	20	Very High	1D	Ex ta
PROBABLE	21	High	2D	Ex tb - IP6x
IMPROBABLE	22 Conductive dusts	Normal	2D	Ex tb - IP6x
IMPROBABLE	22 Non-conductive dusts	Normal	3D	Ex tc - IP5x

N. B. Equipment of a higher category can be installed in place of equipment of a lower category.

1. General informations

1.1 Range of motors

The motors presented in this catalogue respect the standards in relation to equipment and protection systems for use on safe areas or potentially explosive atmospheres, in conformity with European directive n. 94/9/CE del 23/3/94, known as the ATEX directive.

Classification of the areas is the responsibility of the user and for the choice of motor the indications are given in Table 1R

The ATEX directive states that two different certificates of conformity are to be issued. One is the "EC-Type examination certificate" for the homologation of the prototype and the other is for the "Production Quality Assurance Notification".

The certificates are issued by Certification Bodies, defined as Notified Bodies, to which the European Community assigns the task of assessing the conformity of products to community directives.

The list of notified bodies can be found in the site of the European Union on the page http://ec.europa.eu/enterprise/ach

The certificates of the motors can be found on Internet at http://www.cemp.eu, on the "Product Search" page.

IECEx certificates can also be found at http://www.iecex.com

All certificates may be supplied on request.

Table 1A - Temperature Class upon request

Version	Т3	T5	Т6
63÷160	Same power as T4	Same power as T4	Power lower than T4
180÷315	Same power as T4	Power lower than T4	Power lower than T4

General informations

Table 1B - Cemp range of motors

Table 1	ப - Cem	np range of motors							4					
	Туре	Version	Frame size	Output range	Ventilation	Operation	F	EPL	= Gb	F •				
	.,,,,,	10101011	[mm]	[kW]	- J. Middoll	Porution	Ex d	Ex de	Ex d	Ex de				
		Single speed, three phase (2, 4, 6, 8 pole)	63 ÷ 315	0.05 ÷ 200.00	IC411	S1	AB 30	AB 35	AC 30	AC 35				
S	ard	Two speeds, three phase (2/4, 4/8, pole) constant-torque Two speeds, three phase (2/4, 4/8, pole) quadratic-torque	63 ÷ 315 63 ÷ 315	0.15 ÷ 160.00 0.18 ÷ 160.00	IC411 IC411	S1 S1	AB 20 AB 40	AB 25 AB 45	AC 20 AC 40	AC 25 AC 45				
Explosion-proof GAS	Standard	Single phase, (2, 4, 6 pole)	63 ÷ 100	0.10 ÷ 100.00	IC411	S1	AB 10	AB 15	AC 10	AC 15				
Ě	l 👸	Single-phase with capacitor in extra-size terminal box (2, 4, 6 pole)	63 ÷ 100	0.10 ÷ 1.10	IC411	S1	AB 12		AC 12					
00		Motors energized by inverter (2, 4, 6, 8 pole)	63 ÷ 315	0.09 ÷ 200.00	IC411	S9	AB 70	AB 75	AC 70	AC 75				
ġ		Single speed, three phase (2, 4, 6, 8 pole)	63 ÷ 315	0.05 ÷ 160.00	IC410	S4	DB 30	DB 35	DC 30	DC 35				
Ė			71 ÷ 160	0.15 ÷ 18.50	IC411	S4	HB 30	HB 35	HC 30	HC 35				
Sic		Single speed, three phase (4, 6, 8 pole)	180 ÷ 315 63 ÷ 315	18.50 ÷ 200.00 0.05 ÷ 160.00	IC416 IC410	S4	DB 30 DB 20	DB 35 DB 25	DC 30 DC 20	DC 35 DC 25				
9	ο.	Two speeds, three phase (2/4, 4/8, pole) constant-torque	71 ÷ 160	0.05 ÷ 160.00 0.15 ÷ 18.50	IC410	S4 S4	HB 20	HB 25	HC 20	HC 25				
×	ž	Two operator, times prices (E/ 1, 1/6, pero) constant torque	180 ÷ 315	18.50 ÷ 160.00	IC416	S4	DB 20	DB 25	DC 20	DC 25				
	With brake		71 ÷ 315	0.18 ÷ 200.00	IC410	S4	DB 50	DB 55	DC 50	DC 55				
	>	Single speed, three phase (6 pole) for hoist applications	71 ÷ 160	0.18 ÷ 11.00	IC411	S4	HB 50	HB 55	HC 50	HC 55				
			180 ÷ 315	15.00 ÷ 160.00	IC416 IC410	S4 S4	DB 50	DB 55 DB 55	DC 50 DC 50	DC 55 DC 55				
		Two speeds, three phase (2/8, 4/12, 4/16 pole) for hoist	71 ÷ 315 71 ÷ 160	0.06 ÷ 160.00 0.06 ÷ 7.50	IC410	S4 S4	DB 50 HB 50	HB 55	HC 50	HC 55				
		applications	180 ÷ 315	2.00 ÷ 37.00	IC416	S4	DB 50	DB 55	DC 50	DC 55				
								T4 - T						
	Туре	Version	Frame size	Output range	Ventilation	Operation	Ex d	EPL = 0	Gb - Db Ex d	Ex de				
	"		[mm]	[kW]			IIB IIC			IC				
		Single speed, three phase (2, 4, 6, 8 pole)	63 ÷ 315	0.05 ÷ 200.00	IC411	S1	AB 30	AB 35	AC 30	AC 35				
	2	Two speeds, three phase (2/4, 4/8, pole) constant-torque	63 ÷ 315	0.15 ÷ 160.00	IC411	S1	AB 20	AB 25	AC 20	AC 25				
5	Standard	Two speeds, three phase (2/4, 4/8, pole) quadratic-torque	63 ÷ 315	0.18 ÷ 160.00	IC411	S1	AB 40	AB 45	AC 40	AC 45				
Š F	Sta	Single phase, (2, 4, 6 pole) Single-phase with capacitor in extra-size terminal box (2, 4, 6 pole)	63 ÷ 100 63 ÷ 100	0.10 ÷ 3.00 0.10 ÷ 1.10	IC411 IC411	S1 S1	AB 10 AB 12	AB 15	AC 10 AC 12	AC 15				
호의		Motors energized by inverter (2, 4, 6, 8 pole)	63 ÷ 315	0.09 ÷ 200.00	IC411	S9	AB 70	AB 75	AC 70	AC 75				
Explosion-proof GAS + DUST		Single speed, three phase (2, 4, 6, 8 pole)	63 ÷ 315	0.05 ÷ 160.00	IC410	S4	DB 30	DB 35	DC 30	DC 35				
Si S			71 ÷ 160	0.15 ÷ 18.50	IC411	S4	HB 30	HB 35	HC 30	HC 35				
g &		Single speed, three phase (4, 6, 8 pole)	180 ÷ 315	18.50 ÷ 200.00	IC416	S4	DB 30	DB 35	DC 30	DC 35				
Щ	ο.	Two speeds, three phase (2/4, 4/8, pole) constant-torque	63 ÷ 315 71 ÷ 160	0.05 ÷ 160.00 0.15 ÷ 18.50	IC410 IC411	S4 S4	DB 20 HB 20	DB 25 HB 25	DC 20 HC 20	DC 25 HC 25				
] ak	Two operato, three phase (2) 1, 170, peroy constant torque	180 ÷ 315	18.50 ÷ 160.00	IC416	S4	DB 20	DB 25	DC 20	DC 25				
	With brake		71 ÷ 315	0.18 ÷ 200.00	IC410	S4	DB 50	DB 55	DC 50	DC 55				
	>	Single speed, three phase (6 pole) for hoist applications	71 ÷ 160	0.18 ÷ 11.00	IC411	S4	HB 50	HB 55	HC 50	HC 55				
			180 ÷ 315 71 ÷ 315	15.00 ÷ 160.00 0.06 ÷ 160.00	IC416 IC410	S4 S4	DB 50 DB 50	DB 55 DB 55	DC 50 DC 50	DC 55 DC 55				
		Two speeds, three phase (2/8, 4/12, 4/16 pole) for hoist	71 ÷ 313	0.06 ÷ 7.50	IC410	S4 S4	HB 50	HB 55	HC 50	HC 55				
		applications	180 ÷ 315	2.00 ÷ 37.00	IC416	S4	DB 50	DB 55	DC 50	DC 55				
Non sparking GAS	Туре	Version	Frame size	Output range [kW]	Ventilation	Operation			3 = Gc					
ark \S		Single speed, three phase (2, 4, 6, 8 pole)	[mm] 63 ÷ 315	0.18 ÷ 200.00	IC411	S1			nA 30					
sp ds	Standard	Two speeds, three phase (2/4, 4/8, pole) constant-torque	63 ÷ 315	0.15 ÷ 160.00	IC411	S1			30					
on	tanc	Two speeds, three phase (2/4, 4/8, pole) quadratic-torque	63 ÷ 315	0.18 ÷ 160.00	IC411	S1			30					
Ž	ਲ	Motors energized by inverter (2, 4, 6, 8 pole)	63 ÷ 315	0.09 ÷ 200.00	IC411	S9		AN	30					
			Frame size	Output range					5°C					
	Туре	Version	[mm]	[kW]	Ventilation	Operation		= Db tb		= Dc				
		Single speed, three phase (2, 4, 6, 8 pole)	63 ÷ 315	0.18 ÷ 200.00	IC411	S1		30		30				
	9	Two speeds, three phase (2/4, 4/8, pole) constant-torque	63 ÷ 315	0.15 ÷ 160.00	IC411	S1		20		20				
	Standard	Two speeds, three phase (2/4, 4/8, pole) quadratic-torque	63 ÷ 315	0.18 ÷ 160.00	IC411	S1		40		40				
	Sta	Single phase, (2, 4, 6 pole) Single-phase with capacitor in extra-size terminal box (2, 4, 6 pole)	63 ÷ 100 63 ÷ 100	0.10 ÷ 3.00 0.10 ÷ 1.10	IC411 IC411	S1 S1) 10) 12) 10) 12				
		Motors energized by inverter (2, 4, 6, 8 pole)	63 ÷ 315	0.10 ÷ 1.10	IC411	S9		70		70				
Ŀ		Single speed, three phase (2, 4, 6, 8 pole)	63 ÷ 315	0.05 ÷ 160.00	IC410	S4		30		30				
DUST			71 ÷ 160	0.15 ÷ 18.50	IC411	S4		30		30				
Ω		Single speed, three phase (4, 6, 8 pole)	180 ÷ 315	18.50 ÷ 200.00 0.05 ÷ 160.00	IC416	S4		30		30				
	Φ	Two speeds, three phase (2/4, 4/8, pole) constant-torque	63 ÷ 315 71 ÷ 160	0.05 ÷ 160.00 0.15 ÷ 18.50	IC410 IC411	S4 S4) 20) 20) 20) 20				
	With brake	posse, see pee (E/ 1, 1/0, polo) ourbtaint torque	180 ÷ 315	18.50 ÷ 160.00	IC416	S4		20		20				
	i l		71 ÷ 315	0.18 ÷ 200.00	IC410	S4	DC	50	DD	50				
	>	Single speed, three phase (6 pole) for hoist applications	71 ÷ 160	0.18 ÷ 11.00	IC411	S4	1	50		50				
			180 ÷ 315	15.00 ÷ 160.00	IC416 IC410	S4 S4) 50) 50) 50) 50				
		Two speeds, three phase (2/8, 4/12, 4/16 pole) for hoist	71 ÷ 315 71 ÷ 160	0.06 ÷ 160.00 0.06 ÷ 7.50	IC410 IC411	S4 S4) 50) 50) 50) 50				
		applications	180 ÷ 315	2.00 ÷ 37.00	IC416	S4		50		50				
ng	Туре	Version	Frame size	Output range	Ventilation	Operation			150°C Gc - Db					
sparkii DUST	.,,,,,		[mm]	[kW]		<u> </u>		- Ex tb	Ex nA	- Ex tc				
gg DC	ard	Single speed, three phase (2, 4, 6, 8 pole)	63 ÷ 315	0.18 ÷ 200.00	IC411	S1		30		30				
- 0,	Standard	Two speeds, three phase (2/4, 4/8, pole) constant-torque Two speeds, three phase (2/4, 4/8, pole) quadratic-torque	63 ÷ 315 63 ÷ 315	0.15 ÷ 160.00 0.18 ÷ 160.00	IC411 IC411	S1 S1		20 40		20 240				
<u> </u>	Sta	Motors energized by inverter (2, 4, 6, 8 pole)	63 ÷ 315	0.18 ÷ 160.00 0.18 ÷ 200.00	IC411	S9		1 40 1 70		2 40 2 70				
Non sparking + DUST			1	i I				T 15	0°C					
Non +		Version	Version						ge Ventilation					
	Туре	Version	Frame size [mm]	Output range [kW]	Ventilation	Operation	F.		= Mb	de				
		Version Single speed, three phase (2, 4, 6, 8 pole)			Ventilation IC411	Operation S1	-	EPL c d 1 30	Ex	de 1 35				
MINING H	Stan-dard		[mm]	[kW]			AN AN	k d	AM AM					

1. General informations

1.2 Common main characteristics

- Flameproof motors compliant with the Standards IEC EN 60079-0, 60079-1, 60079-7 for atmospheres where gas is present and IEC EN 60079-31 for areas where combustible dust is present.
- Three phase and single phase Squirrel Cage Asynchronous Induction motors.
- Totally enclosed, fan cooled, frame IP55 with Terminal box IP65.
- The motors dimensions comply with IEC 60072 standard.
- Power Supply 400V/50Hz.
 Three-phase, 1-speed motors, 2-4-6-8 poles, T4 (for sizes between 63 and 250, multi-voltage power supply 380-400-420V/50Hz and 460V/60Hz).
- Class F insulation.
- Noise level within 86 dB (A).
- Terminal Box:
- available both in a flameproof, or increased safety version
- large size
- standard position top, opposite feet
- rotate by 90° in 4 positions.
- Motor frame and terminal box enclosure separated to avoid the transmission of explosions.
- Winding cables connected to the terminal board by means of terminal blocks or by a flameproof sealing device.

- Internal and external mechanical components painted with epoxy polyester powders;
- stainless steel nameplate,
- anti-corrosion screws.
- · Highly resistant to impact:
- cast iron made frame, terminal box and endshields.
- fan cover in sheet steel.
- Low friction dust seals.
- The conformity certificates also cover alternatives, such as:
- altitude over 1000m
- modification of the rated voltage and rated frequency
- power supply from an inverter
- motor protection through temperature detectors
- duty S1 to S9.

1.2.1 Special characteristics for motors with brakes

- Mounting options B3, B5, B35, B14, B34.
- Brake power supply:
- 400V/3/50Hz (for motors with axle height of 63÷160)
- 230V/1/50Hz (for motors with axle height of 180÷250)
- Double terminal board box, one for the motor and the other for the brake, both can be rotated through 90° in 4 positions, for motors with an axle height of 180÷250.

1.2.2 Special characteristics for motors for mining applications

 The motors in the ATEX series for mines come under group I Category M2.
 They are intended for use below ground and in surface areas of mines where firedamp or combustible powder can be found.

This equipment is meant to be de-energised in an explosive atmosphere.

- Mounting options B3, B5, B35, B14, B34.
- · High protection against corrosion:
- inside and outside surfaces poly-esther powder painting (minimum thickness 150 μm)
- stainless steel nameplate
- anticorrosion plated fasteners.
- Highly resistant to impact:
- special fan cover in sheet steel with rear grid protection.
- The conformity certificates also cover alternatives, such as:
- modification of the rated voltage and rated frequency
- power supply from an inverter
- motor protection through temperature detectors
- duty S1 to S9.

1.3 Main options

Electrical variants

- Non-standard voltages and frequencies (maximum voltage 1000V).
- · Motors for tropical climates.
- Motors for low temperatures (-50°C)
- Temperature rise below 80K.
- · Motors insulated to class H.
- Motors with bimetallic detector, thermistor PTC or thermistor PT100.
- Motors with anti-condensation heaters.
- · Motors with special electrical design.
- Single-phase motors with capacitor fitted in a large-size terminal box (Ex d, max 50 µF).

Mechanical variants

- · Special flanges and shafts.
- Double ended shafts.
- Cable gland fitted to terminal box.
- Terminal box with special cable entries.
- Motors without terminal box with sealing joints and conduits.
- Motors protection IP56 IP65 IP66.
- Motors with condensation drainage valves.

- Motors with special bearings (uni-directional, with sensors, with rollers, insulated, oversized, thrust bearings).
- Vibration level Grade A or B, according to IEC 60034-14.
- Motors with a rain cap or sun shield, water-shedding disc.
- Side terminal box frame size 160 to 315.
- Separate terminal box for auxiliary terminals.
- Low noise emission version.
- High protection against corrosion for tropical climates or applications in marine environments:
- external mechanical components finished with epoxy paint;
- protection of the internal parts (winding and rotor) with protective paint;
- stainless steel screws.

Accessories

- Motors suitable for frequency inverter drive.
- · Motors with encoder.
- Motors with forced ventilation (from frame size 90).

Certificates

 Motors according to American Bureau of Shipping, Bureau Veritas, Det Norske Veritas, Germanischer LLoyd, Korean Register of Shipping, LLoyd Register of Shipping, Nippon Kaiji Kyokaj, R.I.Na., IECEx, CUTR, CCOE.

1.3.1 Further options for motors with brakes

Electrical variants

- Special power supply voltages and frequencies; maximum voltage 690 V both for the motors and the three-phase brake. For single-phase brakes, maximum voltage 440 V.
- Motors with anti-condensate heating coils for both the motor and the brake.
- D.C. current brake
- Positive brake (brakes when energized) with uninterrupted current.

Mechanical variants

Manual release

1. General informations

1.4 Nomenclature

A D	Atex Motors with				ventilat	ion	Н	Mo	tors	with s	self-	venti	latin	g br	akes	
Pos	. 2 = Type of a															
В	Enclosure g						Q	Nor	n spa	arking	+ E	Dust				
С	Enclosure g	oup II	2							arking						
D	Dust						M	Gro	oup I	for m	ines	s				
	. 3 = Type of n		lectri	ic ch	aracter	istics		Thr	700 P	haaa	2 or	2004	aua	drati	o tor	
1 2	Single phase Three-phase		ed. co	onsta	ant tor	aue			r liftin	hase na	2 SJ	Jeeu	qua	urai	C tore	ĮΨ
3	Three-phase									erters						
	. 4 = Terminal		sion:	:			-	D	1 1'		. 11					
0	Standard ve									on me						
3	Without box	, with p	olate I	Ex d			2	Ex	d cap	pacito	or ho	older	in e	xtra-	size l	00
Pos	. 5 = Size (cen	tre heig	jht):		13	2			200	n			28	20		
7		100			16				225				31			
80		112			18	80			250	0						
Pos	. 6 = Length o		pack		90 100	112	132		16	30	190	200	225	250	280	2
		03 1	' 0	0 9	100	1112		*	10	*	100	200	223	250	200	٥
Ext	ra short						SA									Г
		-				-		-					-		-	
Sho	ort	A	A A	4 5	S LA	М	SB	_	MA MR	М	М	LA	S	м	S	
Sho	ort dium		A A		S LA	М	SB MB	_	MA MB L	M L	M L	LA	S	М	S	
Sho Me Lor	ort dium			3 1		M	SB MB	М	MB L	L	L	LB	M ML		M	
Sho Me Lor Ext	ort dium ig		ВЕ	3 1		M	SB MB	М	MB L		L	LB	M ML		M	ı
Sho Me Lor Ext	ort dium g ra long 7 = Polarity: 2 poles	B I	B E	B I	L LB	y: 2 /	SB MB ML 4 poles	M L	MB L	* Th	ree-	LB phase	M ML se, 2	-spe	M ed ve	ers
Sho Me Lor Ext	ort ddium gg ra long 7 = Polarity: 2 poles 4 poles	B 1	B E L	B I	L LB e polarit e polarit	y: 2 / y: 2 /	SB MB ML 4 poles 8 poles	M L	MB L 46 48	* Th	ree-	LB phase	M ML se, 2 arity:	-spe 4/6 4/8	M ed ve	rs
Sho Me Lor Ext Pos 2 4 6	ort dium g ra long 7 = Polarity: 2 poles 4 poles 6 poles	B I	B E L	B I	L LB	y: 2 / y: 2 /	SB MB ML 4 poles 8 poles	M L	MB L 46 48 41	* Th	ree- oubl oubl	LB phase	M ML se, 2 arity: arity:	4/6 4/8 4/1	M ed ve	ers
Sho Me Lor Ext	ort dium g ra long 7 = Polarity: 2 poles 4 poles 6 poles 8 poles	B 1	B E L	B I	L LB e polarit e polarit	y: 2 / y: 2 /	SB MB ML 4 poles 8 poles	M L	MB L 46 48	* Th * Th D D D D D D	ree- oubl oubl oubl	LB phase le policie policie policie	M ML se, 2 arity: arity: arity:	4/6 4/8 4/1 4/1	M ed ve	ers
Pos 2 4 6 8	ort dium g ra long . 7 = Polarity: 2 poles 4 poles 6 poles 8 poles 10 poles	B 1	B E L	B I	L LB e polarit e polarit	y: 2 / y: 2 /	SB MB ML 4 poles 8 poles	M L	46 48 41 43	* Th	coubling outside outsi	LB phase le policie policie policie policie	M ML se, 2 arity: arity: arity: arity:	4/6 4/8 4/1 4/1 6/8	M ed ve	ers
Pos 2 4 6 8 10 12	ort dium g ra long . 7 = Polarity: 2 poles 4 poles 6 poles 8 poles 10 poles	24 28 21	B E L	3 I	L LB e polarit e polarit	y: 2 / y: 2 /	SB MB ML 4 poles 8 poles	M L	46 48 41 43 68	* Th	coubling outside outsi	LB phase le policie policie policie policie	M ML se, 2 arity: arity: arity: arity:	4/6 4/8 4/1 4/1 6/8	M ed ve	ers
Pos 2 4 6 8 10 12 Pos B3	ort dium g ra long 7 = Polarity: 2 poles 4 poles 6 poles 8 poles 10 poles 12 poles 8 = Mounting	24 28 21	Do D	3 I	L LB e polarit e polarit	y: 2 / y: 2 /	SB MB ML 4 poles 8 poles	M L	466 488 411 433 688 611	* Th	coubling outside outsi	LB phase le policie policie policie policie	M ML se, 2 arity: arity: arity: arity:	4/6 4/8 4/1 4/1 6/8	M ed ve	ers
Pos 2 4 6 8 10 12 Pos B3 B5	ort dium g ra long 7 = Polarity: 2 poles 4 poles 6 poles 8 poles 10 poles 12 poles 8 = Mounting	24 28 21 (IM Cc	DO D	3 I	L LB e polarit e polarit	y: 2 / y: 2 /	SB MB ML 4 poles 8 poles	M L	466 48 41 43 68 61	* Th	coubling outside outsi	LB phase le policie policie policie policie	M ML se, 2 arity: arity: arity: arity:	4/6 4/8 4/1 4/1 6/8	M ed ve	es es
Pos 2 4 6 8 10 12 Pos B3 B5 B1	ort ddium g ra long 7 = Polarity: 2 poles 4 poles 6 poles 8 poles 10 poles 12 poles 8 = Mounting	24 28 21 (IM Co	D. D	3 I	L LB e polarit e polarit	y: 2 / y: 2 /	SB MB ML 4 poles 8 poles	M L	46 48 41 43 68 61 V6	* Th * Th * Th D D D D D D D D	coubling outside outsi	LB phase le policie policie policie policie	M ML se, 2 arity: arity: arity: arity:	4/6 4/8 4/1 4/1 6/8	M ed ve	ers
Pos Pos Pos B3 B5 B1 B3	ort ddium g ra long 7 = Polarity: 2 poles 4 poles 6 poles 8 poles 10 poles 12 poles 8 = Mounting	24 28 21 (IM Co V5 V1 V18	D. D	3 I	L LB e polarit e polarit e polarit	y: 2 / y: 2 /	SB MB ML 4 poles 8 poles	M L	466 48 41 43 68 61	* Th * Th * Th D D D D D D D D	coubling outside outsi	LB phase le policie policie policie policie	M ML se, 2 arity: arity: arity: arity:	4/6 4/8 4/1 4/1 6/8	M ed ve	ers
Pos Pos Pos B3 B5 B1 B3 Pos	ort ddium 19 ra long 7 = Polarity: 2 poles 4 poles 6 poles 8 poles 10 poles 12 poles 12 poles	24 28 21 (IM Co V5 V1 V18 V15	Di D	box:	L LB e polarit e polarit e polarit	y: 2 / y: 2 / y: 2 /	SB MB ML 4 poless 8 poless 12 pole	M L s	466 488 411 433 688 611 V66 V3	* Th Th D D D D d d d d d d d d d	couble ouble	phase polate pol	M ML arity:	4/6 4/8 4/1 4/1 6/8	M ed ve	ers
Pos 2 4 6 8 10 12 Pos 83 85 81 83 Pos 37	ort dium g ra long 7 = Polarity: 2 poles 4 poles 6 poles 8 poles 10 poles 12 poles 12 poles 15 18 = Mounting 16 16 16 17 18 = Wersion v	24 28 21 (IM Co V5 V1 V18 V15	D. D	box:	L LB e polarit e polarit e polarit :	-spee	SB MB ML 4 poless 8 poles 12 pole	M L ss	466 48 41 43 68 61 V6 V3 V19 V36	* Th * Th D D delta	con	phase polate pol	M ML arity:	4/6 4/8 4/1 4/1 6/8	M ed ve	ers

2.1 Installation and application

Standard installation

The motors can be installed outdoors and in dusty, moist and chemically aggressive environments (industrial climate) at ambient temperatures from -20°C to 40°C.

Mechanical protection (IP); Table 2A

The mechanical protection systems for electric motors are classified with the IP code followed by two numbers and, in some applications, by a letter.

IP (International Protection):

this indicates the level of protection against accidental contacts of foreign bodies and against water.

0 - 6 (1st digit):

this indicates the level of protection against accidental contacts of foreign bodies.

0 - 8 (2nd digit):

this indicates the level of protection against water.

W, S e M (additional letters for special protections):

W; this means that the machine is to be used in specified weather conditions and with special protections.

The W letter has to be added to the IP code (e. g. IPW55).

S and M; these are used for protection against water.

The letter S stands for static protection; protection against water only for a stationary motor. Letter M stands for protection against water when the motor is running (e. g. IP56S).

Without the additional letters the protection applies in both cases (standing still and running motor).

Our standard motors are IP55 (terminal box IP65).

On request we can supply motors without ventilation with IP56 or IP57, and self ventilated motors with IP56S.

Upper-Deck Installation

Motors meant for installation on board ships and offshore areas are designed to comply with the specifications of the relevant classification authorities (see 1.3 Main options - Certificates).

Gear mounting, Oil-protected Flange

In some applications, it is necessary that the flange and the drive shaft are completely sealed against oil. This need must be specified during the order phase.

Fixed bearings

Some applications need to have a "zero axial play". This need must be specified during the order phase.

Cooling

Motors are air-cooled by means of external surface ventilation (IC 411).

Standard motors have radial flow fan allowing fully reversible rotation.
Reference standards are: IEC 60034-6.
From frame size 100 to 315 motors may be supplied with forced ventilation.

Table 2A - Mechanical protection to IEC 60034-5

Protection against accidental contact and the penetration of foreign bodies	International protection	Protection against water
Complete protection against contact and approaching of voltage-carrying parts as well as against contact	IP55 standard design	A jet of water squirting out of a nozzle towards the motor from all directions has no harmful effect.
with rotating parts inside the housing. Protection against harmful dust deposits. The penetration of dust is not completely prevented but the dust cannot enter in such quantities as to	IP56 special design	In case of temporary flood, e. g. heavy seas, water cannot enter into the motor in harmful quantities.
affect operation.	IP57 special design	Motor can operate under water at given pressure.
Complete protection against contact of voltage-carrying parts as well against contact with rotating parts inside the housing. Protection against the penetration of dust (dust-proof).	IP65 special design	A jet of water squirting out of a nozzle towards the motor from all directions has no harmful effect.
Complete protection against contact of voltage-carrying parts as well against contact with rotating parts inside the housing. Protection against the penetration of dust (dust-proof).	IP66 special design	In case of temporary flood, e. g. heavy seas, water cannot enter into the motor in harmful quantities.

2.2 Low temperature version and anti-condensation heating

Low Temperature Version

Motors intended for use at extremely low temperatures are specially designed.

Flameproof certificates are valid for temperatures as low as -50°C.

Motors equipped with heating coils keep the minimum temperature of a stopped motor at -20°C (see table 2B).

As an alternative to heaters, the motors can be powered with low voltage via terminals U1 and V1 (see table 2B).

Also, it is possible to use a special construction with suitable materials in low temperature areas (-50°C) as an alternative to heating the motor.

A version is also available for temperature -60°C with other certifications.

Anti-condensation heating

Condensate may form inside the motor due to temperature fluctuations.

To prevent this from happening, motors

must be heated using strip type heaters on the end windings or low voltage power can be supplied to the winding via terminals U1 and V1.

The heat output is given in table 2B. It is vital that during the motor operation the heaters are turned off.

The supply voltage for the heaters is 230V \pm 10% (115V \pm 10% on request)

Table 2B - Data of the anti-condensation heater

	For preventing condensation								For protection at temperatures below -20 °C (down to -50 °C)						
	With	With Via Motor winding						With	Via Motor winding						
Frame size	heater	Output			ig voltage motor volt			heater	Output Heating volt rated motor						
	Output [W]	[VA]	230V [V]	400V [V]	440V [V]	500V [V]	690V [V]	Output [W]	Output [W]	230V [V]	400V [V]	440V [V]	500V [V	690V [V]	
63	25	35	45	75	90	100	130	50	90	70	120	140	160	210	
71	25	55	35	65	75	85	110	50	130	60	100	120	135	175	
80	25	70	30	55	65	75	100	50	180	50	90	100	115	155	
90	25	100	25	45	50	60	80	50	250	40	70	80	95	125	
100	25	140	20	35	40	50	65	50	440	40	65	75	85	115	
112	50	190	20	38	45	50	65	100	490	35	60	70	80	105	
132	50	300	20	35	40	45	60	100	700	30	55	65	70	90	
160	50	420	17	30	35	40	50	100	950	25	45	55	60	80	
180	100	500	15	25	30	35	45	200	1200	25	40	50	55	70	
200	100	720	13	20	25	30	40	200	1500	20	35	40	45	60	
225	100	800	13	20	25	30	40	200	2200	20	35	40	45	60	
250	100	950	10	20	25	30	40	200	2700	20	35	40	45	60	
280	200	1700		20	22	25	30	200	3000		28	35	40	50	
315	200	1900		16	20	25	30	200	3600		25	32	38	48	
315 L	200	2100		14	18	24	30	200	4800		22	30	35	45	

2.3 Materials, painting and nameplate

2.3.1 Materials

Table 2C - Materials of the main components:

	-	
Frame size	63÷250	280÷315
Frame Endshields Terminal box	Cast iron G200 (ISO 185)	Cast iron
Fan cover Rain cap	Steel	Steel
Fan	Non sparking thermoplastic material or aluminium Brass for motors for mining applications	Aluminium Brass for motors for mining applications
Shaft	Steel C45	Steel C45
Rotor	Squirrel cage in pressure cast aluminium	Squirrel cage in pressure cast aluminium
Winding	Insulation class F or H	Insulation class F or H
Bolts and screws	Galvanised steel 8.8 or A4-80 UNI EN ISO 3506-1	Steel 8.8 zinc plated
Cable gland (on request)	Brass or stainless steel	Steel 8.8 zinc plated
Brake enclosure	Cast iron	Cast iron
Brake terminal box	Cast iron	Cast iron

2.3.2 Painting

Table 2D - Materials of the main components:

Frame size	63÷250	280÷315
Pretreatment	All components are sandblasted, cleaned and degreased	All components are sandblasted, cleaned and degreased
Painting	Polymerised epoxy polyester powder, oven-baked at 200°C	Treatment with anti-corrosion primer Final coat of enamel paint
Thickness	Total 120 µm (different thicknesses available upon request)	Total 120 µm (different thicknesses available upon request)
Colour	RAL 5010 (special colours available upon request)	RAL 5010 (special colours available upon request)
Mechanical strength	Non-abrasive, elastic, insensitive to scratches, resistant to impact	Non-abrasive, elastic, insensitive to scratches, resistant to impact
Corrosion resistance	Highly resistant to water, water vapour, salt water	Highly resistant to water, water vapour, salt water
Chemical resistance	Good resistance in chemically aggressive environments	Good resistance in chemically aggressive environments
Temperature range	-40°C +130°C	-40°C +130°C

2.3.3 Nameplate

The stainless steel nameplate is fitted on the motor frame.


```
\epsilon
               \langle \epsilon_x \rangle
                                                   cemp
                                   IM2
  0722 CESI 09 ATEX 046 X
                                                                           Y 1 4
                                                             n
  Electric Motor AM30 225S 4
                                                                              3 ~
               Ex de I Mb - IP55
                                                                           k ₩ ⊕
Φ<sub>4 0 0 Δ</sub>
      V
                      Α
                               Ηz
                                        1/min
                                                        cosφ
                  69,0
                               5 0
                                         1480
                                                         0,84
                                                                           3 7
  690Y
                  39,9
  IC411
                 CIF Ta40°C S1
                                                                       kg360
       Manufacturer Cemp srl - I 20030 SENAGO (Milan) - ITALY
Restore the greasing at every opening - fasteners 8.8 ISO 898-1
To be energized with cable suitable for temperature 90°C
Warning - Potential danger of electrostatic charge - Read safety instruction
```


Fig. 2A - Example of plate

2.4 Shaft ends, balancing, vibrations, noise levels, coupling and belt drives

Shaft ends

The shaft ends are cylindrical and comply with IEC 60072 in their design and in their correspondence to frame sizes and outputs. The shaft ends of all motors are equipped with a tapped hole to assist in the fitting of pulleys and couplings.

The keys are always supplied along with the motors.

On request, special shaft ends or a second free shaft end can be provided.

Pole-changing motors with a 2-pole speed have the same shaft ends as single-speed 2-pole motors.

Balancing, and vibration

The motors are dynamically balanced with half keys in accordance with vibration grade "A" (N) normal balance IEC 60034-14 (and ISO 8821).

The low-vibration version "B" (R) (reduced) can be supplied where high demands are made on quiet running.

Care must be taken to ensure that transmission parts (pulleys, couplings) supplied by others are dynamically balanced with half key.

Noise level

Noise measurements are performed to IEC 60034-9.

In the performance data, the sound pressure levels "Lp" are given in dB (A) for the individual frame sizes.

They apply for no load at 50 Hz.

The tolerance is + 3 dB (A).

At 60 Hz the values of sound pressure increase approximately by 4 dB (A).

Coupling drive

When aligning a motor to be coupled directly to the machine, care must be taken that the rollers and balls of the bearings do not jam.

Elastic couplings are permissible with all motors.

To ensure vibration-free running and to avoid any inadmissible stress on the bearings, the machine to be coupled must still be exactly aligned in the case of elastic coupling.

Maximum accuracy must be applied to the coupling of 2-pole motors.

Belt drive

tools.

Slide rails are used for motors for easy tensioning and readjustment at the belts. Permissible forces have to be taken into consideration (See Table 2I). Pulleys and couplings must only be fitted and removed by means of specific

Table 2E - Vibration limits according to IEC 60034-14

Releasing vets	Limit values of the speed of vibration/oscillation for frame sizes:								
Balancing rate	63÷132 [mm/s]	160÷280 [mm/s]	315 [mm/s]						
A	1.6	2.2	2.8						
В	0.7	1.1	1.8						

Terms of measure: Free standing

2.5 Brake motors

Construction method

Motors in these two series are built with an integrated brake and are considered as an integral unit, consequently, a single ATEX certificate is provided for both motor and brake.

The brake is enclosed in a special enclosure built with a Ex d IIB or IIC protection type and IP65 mechanical protection.

The temperature class and maximum surface temperature are those of the motor. The electro-magnet winding is encapsulated in resin which isolates it and provides mechanical protection.

Motors with an axle height of 63 to 160 are normally fitted with a three-phase magneto with a power supply of 110V to 690V.

Alternatively, upon request, a magneto can be supplied with a direct current power supply using a rectifier, with a single-phase power supply of 48V to 440V.

If you have a direct current power supply line, the magneto can be powered directly using that line (from 24V to 230V).

Motors with an axle height of 180 to 250 use a "K10" type brake, which is only available with the magneto powered using direct current. This type of brake is always supplied with a direct current power supply using a rectifier, with a single-phase power supply of 48V to 440V.

Operation

The brake is made up of:

- the magnet;
- the counter-magnet (or mobil armature) supported by three small columns where it can slide;
- braking disk
- toothed hub secured to the motor shaft.

When the coil is powered, the magnet attracts the mobil armature which thus releases the braking disk so the motor can rotate freely.

By removing voltage to the magnet, the springs push the mobil armature against the braking disk. which, by creating friction against the motor shield, locks the shaft rotation.

In rest conditions, when the brake is not powered, the motor remains locked.

Braking torque calibration

The motor is supplied with a ready-to-use calibrated brake.

Special calibration available on request. This is carried out during assembly before final testing.

Table 2F shows the standard braking torques.

Manual release

DB - DC and HB - HC series flameproof motors with brake can be supplied on request with hand release lever for the brake.

Pressure is applied on the release mechanism which moves the mobile armature, freeing the motor's shaft.

When releasing pressure on the mechanism the brake automatically returns to the fail safe position.

Variants (63÷160)

On request: brake motors can be supplied with single-phase power supply brakes between 110V and 400V. This version is only available in the Ex d version, the terminal box contains a rectifier.

 supplied with D.C. current between 24V and 260V positive braking-when power is applied, the brake activates and locks on.
 With the power supply off, the brake is not energized and the motor shaft rotates freely.

The positive brake is available only with D.C. current for motors with 90÷100 axis height.

Table 2F - Standard technical data of the integrated brake

Frame size	Brake model	Static braking torque [Nm]	Air gap (+0.1 / 0) [mm]	On-off braking time requested [ms]	Number of disks [n°]	Maximum speed [1/min]	Power [VA]	Current max. [A]
63	AC1	4	0.2	20	1	3600	40	
71	MEC 63	9	0.3	25	1	3600	50	
80	T80	17	0.3	30	1	3600	60	
90	MEC 80	35	0.3	40	1	3600	14	
100	MEC 90 (◆)	48	0.3	40	1	3600	180	
112	MEC 100 (◆)	70	0.3	45	1	3600	250	
132	MEC 110 (◆)	90	0.3	90	1	3600	400	
160	T140 (•)	130	0.3	100	1	3600	480	
180÷200	K10	400	0,3	220	1	1800	140	1,5
225÷250	K10	800	0,3	220	1	1800	140	1,5
280÷315 S-M	K10	240 - 400 - 800	0,3	220	1	1800	140	1,5
2007313 3-101	KIU	1500	0,0	220	2	1800	140	1,5

^{(*) 2} brake discs available by request (braking torque about + 50%).

Fig. 2B - Construction diagram for a 63÷160 brake

Fig. 2C - Construction diagram for a 71÷160 brake

Fig. 2D Construction diagram for a 180÷315 brake

Fig. 2E -Manual release (optional on request) for motors 71÷160 not ventilated

Fig. 2F -Manual release (optional on request) for motors 180÷315 with forced ventilation

Fig. 2G -Manual release (optional on request) for motors 180÷315 not ventilated

2.6 Bearing system

Standard motors are equipped with radial deep groove ball bearings (ZZ pre-greased series) or open bearings complete with grease nipples.

Where requested roller, or other special bearings can be fitted.

Lubrication

The ZZ series bearings are lubricated for life and require no further lubrication.

Open bearings are supplied with grease nipples and are to be lubricated according to the indications given in the table 2G - 2H.

Bearing Seal

In order to prevent dust and water penetration, a seal ring is fitted to the endshield on the driving and non-driving ends.

These seal rings are highly resistant to vibrations, thermally stable, and resistant to mineral oils and diluted acids.

Seals for media not listed above are available on request.

Fig. 2H - Ball bearings - DE (front)

Fig. 2I - Roller bearings - On request execution DE (front)

Table 2G - Standard model - Closed non-lubricated bearings

	lubricated be		ring			
Frame size	Poles	Drive end	Non-Drive end			
63	2 - 4 - 6 - 8	6202	2 ZZ			
71	2 - 4 - 6 - 8	620	3 ZZ			
80	2 - 4 - 6 - 8	6204 ZZ				
90	2 - 4 - 6 - 8	6205 ZZ				
100	2 - 4 - 6 - 8	6206 ZZ				
112	2 - 4 - 6 - 8	6306 ZZ				
132	2 - 4 - 6 - 8	6308 ZZ C3				
160	2 - 4 - 6 - 8	6309 ZZ C3				
180	2 - 4 - 6 - 8	6310	0 ZZ C3			
200	2 - 4 - 6 - 8	6312	ZZ C3			
225	2 - 4 - 6 - 8	6313	ZZ C3			
250	2	6313 ZZ C3				
250	4 - 6 - 8	6314 ZZ C3	6313 ZZ C3			
280 horizontal	2 - 4 - 6 - 8	6316	ZZ C3			
280 vertical	2 - 4 - 6 - 8	6316	6 C3			
315	2	6316	ZZ C3			
horizontal	4 - 6 - 8	6317 ZZ C3 6316 ZZ				
315	2	6316 C3				
vertical	4 - 6 - 8	6317 C3	6316 C3			

Table 2H - Upon request - Open bearings with lubricators

	J.	lubricators				
Frame	Dalaa		Bearing		Time interval	Amount of
size	Poles	Front ball bearings	Front rollers	Rear ball bearings	for lubrication (hours)	grease*
	2				5500	
160	4	6309 C3	NU 309	6309 C3	8250	12 g
	6 - 8				11000	
	2				2000	12 g
180	4	6310 C3	NU 310	6310 C3	6000	15 g
	6 - 8				7000	
	2				2100	12 g
200	4	6312 C3	NU 312	6312 C3	5000	15 g
	6 - 8				7000	
	2				2000	15 g
225	4	6313 C3	NU 313	6313 C3	4500	
	6				5600	20 g
	8				6400	
	2	6313 C3	NU 313		2000	
250	4		NU 314	6313 C3	4100	20 g
	6	6314 C3		0010 00	5300	
	8				6200	
	2	6316 C3			3700	
280 S	4		NU 316	6316 C3	4300	33 g
	6				4600	3
	8				4800	
	2		NU 316		3700	
280 M	4	6316 C3		6316 C3	4300	33 g
	6	001000			4600	
	8				4800	
	2	6316 C3	NU 316	-	3300	
315 S	4			6316 C3	9500	37 g
	6	6317 C3	NU 317		13700	
	8	22/2/22			15300	
	2	6316 C3	NU 316		2900	
315 M	4			6316 C3	7800	37 g
	6	6317 C3	NU 317		11300	
	8	2012.00			13600	
	2	6316 C3	NU 316	0040.00	4100	33 g
315 LA	4 - 6	6317 C3	NU 317	6316 C3	11100	37 g
	8	0010 00			19500	
04515	2	6316 C3	NU 316	0010 00	3500	07
315 LB	4 - 6	6317 C3	NU 317	6316 C3	9500	37 g
	8				16550	20 =
045 1 0	2	6316 C3	NU 316	0010 00	2900	33 g
315 LC	4 - 6	6317 C3	NU 317	6316 C3	7800	37 g
	2				13600	

^{*} Grease type LGHP2 SKF or equivalent.

2.7 Permissible radial loads on the shaft with standard bearings

Table 21

Table 2I shows the values of radial load calculated considering:

- frequency 50Hz;
- temperature not exceeding 90°C;
- 20,000 hours of life for 2-pole motors;
- 40,000 hours of life for 4, 6, 8-pole motors.

For operation at 60Hz the values have to be reduced by 6% in order to achieve the same useful life. For double speed motors, consider always the higher speed.

The distance of the point of action of force F_{R} from the shoulder of the shaft must not exceed the length of the shaft end.

$$F = belt load [N] = \frac{2 \cdot K \cdot M}{D}$$

$$M = torque [Nm] = \frac{9550 \cdot P}{n}$$

P = rated motor output [kW]
n = rated motor speed [1/min]
D = belt pulley diameter [m]
K = prestress factor governed by belt type: it is assumed

approximately as follows
K = 3 for normal flat belts without tensioning pulley

K = 2 for normal flat belts with tensioning pulley

K = 2.2 for V-belts or special flat belts

Fig. 2L

_		Permissible radial load F _R [N]										
Frame size	Pole number		Ball bearings		F	Roller bearing	ıs					
SIZE	liullibei	X ₀	X ₁	X ₂	X ₀	X ₁	X ₂					
	2	390	360	340								
63	4	390	360	340								
00	6	440	410	380								
	8	490	450	420								
	2 4	490 480	450 450	420 420								
71	6	550	510	480								
	8	610	560	520								
	2	640	590	540								
80	4	640	580	540								
	6	730	660	610								
	8 2	800 730	730 660	670 610								
	4	730	660	600								
90	6	820	750	680								
	8	910	820	750								
	2	1020	910	830								
100	4	1010	910	820								
	6	1150	1030	940								
	8 2	1270 1480	1140 1350	1030 1240								
	4	1470	1340	1240								
112	6	1680	1530	1410								
	8	1850	1680	1550								
	2	2160	1930	1750								
132	4	2140	1910	1720								
	6	2450	2190	1970								
	8 2	2700 2790	2410 2470	2180 2210	5720	5200	4680					
	4	2770	2470	2190	5885	5350	4815					
160	6	3150	2790	2490	5995	5450	4905					
	8	3480	3080	2750	6050	5500	4950					
	2	3600	3200	2950	6490	5900	5310					
180	4	3500	3350	2850	7040	6400	5760					
	6	3900	3600	3300	7370	6700	6030					
	8 2	4300 4500	3950 4300	3700 4000	7480 9680	6800 8800	6120 7920					
	4	4500	4350	4100	10450	9500	8550					
200	6	5300	5500	5000	10780	9800	8820					
	8	5500	5350	5050	10945	9950	8955					
	2	5500	5000	4650	11880	10800	9720					
225	4	5350	4900	4500	12760	11600	10440					
	6 8	5950 6400	5650 6100	5200 5700	13200 13420	12000 12200	10800 10980					
	2	5300	5100	4750	13420	12600	11340					
	4	5650	5400	5300	15950	14500	13050					
250	6	5820	5600	5370	16500	15000	13500					
	8	6420	5980	5520	16665	15150	13635					
	2	5500	5000	4500	15400	14000	12600					
280	4	5665	5150	4635	15950	14500	13050					
	6 8	6930 7920	6300 7200	5670 6480	16500 18150	15000 16500	13500 14850					
	2	5500	5000	4500	14300	13000	11700					
	4	6270	5700	5130	28050	25500	22950					
315 S-M	6	7370	6700	6030	29150	26500	23850					
	8	8360	7600	6840	29700	27000	24300					
	2	6820	6200	5580	13640	12400	11160					
315 L	4	7095	6450	5805	24750	22500	20250					
J.U.	6	8030	7300 8200	6570 7380	27500 30800	25000 28000	22500					

9020

8200

7380

25200

28000

2.8 Permissible axial load on the shaft with standard bearings

If the shaft end is loaded at X2 with the permissible radial load ${\sf F}_{\sf A}$, an additional axial load is allowed (table 2L).

If the permissible radial load is not fully utilized, higher loads are possible in axial direction (Values on request).

Fig. 2M

Fig. 2N

Table 2L											
		Limit axial load with F _R at X ₂ - F _A [N]									
Frame size	Pole number	Ball be	earings	Roller b	pearings						
		B3 push/pull	V5/V6 push/pull	B3 push/pull	V5/V6 push/pull						
63	2 4 6 8	120 120 140 160	110 110 130 150	 	 						
71	2 4 6 8	140 140 170 190	130 120 150 170	 	 						
80	2 4 6 8	190 190 220 250	170 160 190 220	 	 						
90	2 4 6 8	200 200 240 270	170 160 190 220	 	 						
100	2 4 6 8	280 280 330 370	230 220 260 300	 	 						
112	2 4 6 8	410 410 480 540	330 320 370 430	 	 						
100	2 4	590 590	430 380								

00	6 8	140 160	130 150		
	2	140	130		
71	4 6	140 170	120 150		
	8	190	170		
	2	190	170		
80	4	190	160		
	6 8	220 250	190 220		
	2	200	170		
90	4	200	160		
	6 8	240	190 220		
	2	270 280	230		
100	4	280	220		
100	6	330	260		
	8 2	370 410	300 330		
	4	410	320		
112	6	480	370		
	8	540	430		
	2 4	590 590	430 380		
132	6	690	470		
	8	780	560		
	2	750 750	490	1000	700
160	4 6	750 880	450 520	1200 1300	840 910
	8	1000	640	1400	980
	2	880	950	1000	700
180	4 6	880 1030	1150 1350	1250 1350	875 945
	8	1160	1550	1550	1085
	2	1160	1100	1100	770
200	4 6	1160	1200	1200	840
	8	1360 1520	1400 1600	1400 1600	980 1120
	2	1300	1250	1250	875
225	4	1300	1350	1350	945
	6 8	1520 1710	1600 1850	1600 1850	1120 1295
	2	1460	1300	1300	910
250	4	1460	1400	1400	980
	6 8	1710 1920	1600 1920	1600 1900	1120 1330
	2	5500	3850	3700	2590
280	4	5500	3850	3700	2590
200	6	6500	4550	4000	2800
	8 2	7400 5500	5180 3850	4500 3700	3150 2590
315 S-M	4	5800	4060	3500	2450
313 3-W	6	6800	4760	4000	2800
	8 2	7650 2200	5355 1540	4500 3850	3150 2695
045:	4	2200	1540	3800	2660
315 L	6	2500	1750	4600	3220
]	8	3000	2100	5500	3850

2.9 Terminal box design

The standard design has four basic versions:

- Ex d IIB
- Ex d IIC
- Ex de IIB
- Ex de IIC

On request we can supply:

- additional terminal box for auxiliary terminals (Fig. 2P)
- motors without terminal box and with leads (Fig. 2Q)
- bigger terminal box with capacitor for single phase motors (Fig. 2R).

Fig. 20 - Standard motor version terminal box Ex d, group IIB

Fig. 2S - Motor with brake terminal box

Fig. 2T - Motor with brake terminal box

2.10 Position of terminal box and terminals

The terminal box is usually located on top and can be turned through 4 x 90° (Fig. 2U).

For a horizontal mounted motor, the cable entry is normally located on the right side (looking at the driving-end).

Cable entry:

- standard position: 1
- special positions upon request: 2, 3, 4.

Fig. 2U - Positioning of the cable entry, plan view

Terminals and earthing terminal

There are a maximum number of 6 power terminals in the terminal box.

The type of monitoring device depends on

the number of possible additional terminals in the main terminal box.

PTC thermistors can be connected to two additional terminals.

Two terminals are also necessary for connecting the anticondensation heater.

For PT 100 (RTD) thermistors, 3 or 4 terminals are necessary depending on the type chosen.

An earthing terminal is located in the terminal box and another earthing terminal is located on motor frame.

2.11 Cable-entries

As standard, the motors are delivered with one or two threaded cable entries for flameproof packing glands.

Ex de motors can be also provided with Ex e packing glands.

Motors fitted with thermodetectors or heaters are always provided with additional cable entry.

Table 2M

Mains connection cable entries					
Frame	Mains power	Power supply from	Conical threading upon request*		
size	supply	an inverter	ANSI B 2.1	UNI 6125	
63 ÷ 112	1 x M25	1 x M25 + 1 x M20	NPT 3/4"	Gk 3/4"	
132 ÷ 160	2 x M32	1 x M32 + 1 x M20	NPT 1"	Gk 1"	
180 ÷ 250	2 x M40	1 x M40 + 1 x M20	NPT 1.1/4"	Gk 1.1/4"	
280 ÷ 315	2 x M63	1 x M63 + 1 x M20	NPT 2"	Gk 2"	
Auxiliaries cable entries					
63 ÷ 315		1 x M20	NPT 1/2"	Gk 1/2"	

^{*} Other threads available upon request

3.1 Standard operating conditions

Output

The rated outputs and operating characteristics given in the performance data refer according to IEC 60034-1 to:

- continuous duty (S1)
- frequency of 50Hz
- voltage 400V (230V for single phase)
- maximum ambient temperature of 40°C
- maximum height of installation of 1000m above sea level.

Motors (IIB, Ex d or Ex nA or Ex t) can also be operated in ambient temperatures from 40°C to 80°C and at altitudes of more than 1000m to 4000m above sea level.

In these cases, the rated output given in the tables must be reduced in accordance with table 3A or a larger motor has to be chosen.

The rated data does not need to be changed, if at altitudes in excess of 1000 m above sea level, the ambient temperature is reduced according to the following table:

Altitude of installation [m]	Maximum ambient temperature [°C]
0 to 1000	40
1000 to 2000	30
2000 to 3000	19
3000 to 4000	9

Voltage, frequency

The motors as standard are built to run at the voltage and frequency with the tolerances indicated in figure 3A.

The motors can run with the variations envisaged in normal operational areas at a voltage of \pm 5% and frequency of \pm 2%.

Furthermore, the motors can be used in the operational area with restrictions (variations in voltage of \pm 10% and frequency of \pm 3%) as long as the indications given by norm 60034-1 are complied with.

Torque

The motors are fitted with squirrel-cage rotors suitable for direct-on-line starting.

The resulting starting and maximum torques, expressed as a multiple of the rated torques are given in the performance data.

A deviation in the voltage from the rated value changes the torques as an approximate function of the square of the voltages.

Normally two-speed motors have a nominal torque that is roughly the same for both speeds.

A version is also available with quadratic torque, for centrifugal machines (fans, pumps). In this case, the torque at the lower speed is roughly half that available at the higher speed.

Table 3A - Power variation of standard motors in case of coolant temperature different from 40°C or height of installation over 1000 m above sea-level

Fig. 3A

Rated current

In the performance data the rated currents are only indicated for a rated voltage of 400V.

For other voltages the rated currents are inversely proportional to the voltages:

$$\frac{U}{U'} = \frac{I'}{I}$$

This results in:

$$I' = \frac{U \cdot I}{I I'}$$

Speed

The rated speeds shown in the performance data are valid for 50 Hz and the rated speed equals synchronous speed less slip.

The following speeds result from the number of poles and the mains frequencies of 50 and 60Hz:

Dala	No-load speed at		
Pole number	50Hz [1/min]	60Hz [1/min]	
2	3000	3600	
4	1500	1800	
6	1000	1200	
8	750	900	
10	600	720	
12	500	600	
16	375	450	

Direction of rotation

The motors can be operated in both directions of rotation. If the phases are connected in the sequence L1, L2, L3 to the terminals U1, V1, W1, the motor turns clockwise.

The direction of rotation can be reversed by interchanging any two phases.

Note regarding electro-magnetic compatibility

Low voltage induction motors, if installed correctly and connected to the power supply, respect all immunity and emission limits as set out in the regulations relating to electro-magnetic compatibility (EMC "Generic Standard" for industrial environments).

In the case of supply by means of electronic impulse devices (inverters, soft starters etc.), all verifications and any modifications, necessary to ensure that emission and immunity limits, as stated within the regulations, are respected, are the responsibility of the installer.

Tolerances

According to IEC 60034-1 the electrical data stated in the tables are subject to the following tolerances:

Efficiency:

 $Pn \le 50 \text{ kW: - 0.15 (1-η)} \\ Pn > 50 \text{ kW: - 0.10 (1-η)} \\$

Power factor: - $\frac{1 - \cos \varphi}{6}$

(minimum 0.02 - maximum 0.07)

Slip at rated load operating temperature: ± 20% of rated slip.

Locked rotor torque (starting torque):

- 15% + 25%

Maximum torque: - 10%.

Current with locked rotor: + 20% (no lower limit).

,

3.2 Efficiency and power factor at partial load

The efficiency and power factor values shown in the performance data refer to rated output at 50Hz.

3.3 Insulation and temperature rise

Insulation

The components of the insulation system were selected so as to ensure good protection against chemically aggressive gases, vapours, dust, oil and air humidity. All materials used for insulating the winding and winding ends correspond to insulating classes F or H according to IEC 60085:

- Enamel-insulated copper wires with temperature index 200 (class H);
- Insulating sheet on polyester base (class F);
- Impregnation with fenolic resins modified with polyesther resins (class H);

Table 3B - Limit temperature for insulating material according IEC 60085

Insulation class	Limit temperature [°C]
B	130
F	155
H	180

Temperature rise

Standard single-speed motors in continuous service (excluding 315M) have temperature rises that are within the limits for class B.

Motors with higher output and pole-changing motors normally have temperature rise within class F limit.

Table 3C - Temperature rise limit for rotating machines according IEC 60034-1

Insulation class	Max temperature rise [K]
B F I	80 105 125

According to Normative IEC 60034-1, the values shown in the table above may be up to 10° C higher, with a feeding current variance of \pm 5%.

3.4 Duty types

In compliance with IEC 60034-1 the following duty-types are distinguished:

Duty-type S1 - continuous running duty. Constant load operation.

Duty-type S2 - short-time duty.
Operating times of 10, 30, 60, and 90 minutes are recommended.
After each operating period the motor remains de-energized until the winding has cooled down to the ambient temperature.

Duty-type where start-ups DO NOT INFLUENCE winding over-heating:

Duty-type S3 - intermittent periodic duty. Where starting does not influence the temperature. Duty cycle 10 minutes unless otherwise agreed upon. For the cyclic duration factor the values 15, 25, 40, and 60% are recommended.

Duty-type S6 - continuous operation periodic duty.

Duty cycle 10 minutes unless otherwise

agreed upon. For the cyclic duration factor the value 15, 25, 40, and 60% are recommended.

Duty-types where starting and braking have a corresponding INFLUENCE on the temperature rise of the winding:

Duty-type S4 - intermittent periodic duty with starting.

Intermittent periodical operation with identical cycles.

Duty-type S5 - intermittent periodic duty with electric braking.

Intermittent periodical operation with identical cycles, which include an electrical braking phase.

For S4 and S5 duty-types the following details must be given after this code:

- Intermittence ratio;
- The number of starts per hour;
- Moment of inertia of the motor;
- Moment of inertia of the load.

Duty-type S7 - continuous operation periodic duty with electric braking.

Duty-type S8 - continuous operation periodic duty with related load/speed changes.

Duty-type S9 - duty with non-periodical load and speed variations.

Typical operation for motors powered by frequency converters.

Most of the real duty-type conditions represent a combination of duty-types as mentioned under 1. and 2.

In order to exactly determine a suitable motor, details of all the operating conditions are required.

N.B.:

The output ratings stated in the "Performance data" (Chapter 4.) apply to duty-type S1.

Fig. 3B - Duty type S1

Fig. 3C - Duty type S2

Fig. 3D - Duty type S3

Fig. 3E - Duty type S4

Fig. 3F - Duty type S5

Fig. 3G - Duty type S6

Fig. 3H - Duty type S7

Fig. 3I - Duty type S8

Table 3D - Simbology

а	= Load
b	
D	= Electrical losses
С	= Temperature
d	= Time
е	= Speed
t	= Cycle length
D	= Start-up or acceleration time
F, F_1, F_2	 Electrical braking time
N, N ₁ , N ₂ , N ₃	= Constant load operating
	time
L	 Variable load operating time
V	 No-load operating time
R	= Rest time
S	 Overload operating time
Р	= Full load
θ_{max}	= Maximum temperature
THE CONTRACT OF THE CONTRACT O	reached during cycle

Fig. 3L - Duty type S9

3.5 Connecting diagrams

3.5.1 Three-phase motors

Single-speed motors are normally pre-arranged to be connected in star or delta method.

Star connection

Connecting together the W2, U2, V2 terminals (star point) and connecting to the mains the U1, V1, W1 terminals a star connection is obtained.

The phase current I_{ph} and the phase voltage U_{ph} are the following:

 $I_{ph} = I_n$ $U_{ph} = U_n / \sqrt{3}$

where I_n the line current and U_n is the line voltage.

Fig. 3M

Delta connection

Connecting the end of each winding to the beginning of the next winding a delta connection is obtained.

The phase current I_{ph} and the phase voltage $U_{p\underline{h}}$ are the following:

$$I_{ph} = I_n / \sqrt[3]{3}$$

$$U_{ph} = U_n$$

Fig. 3N

Star - Delta starting

The star-delta starting is an easy way to reduce the starting current and starting torque.

Motors can be started with the star-delta starting method whenever the supply voltage correspond to the rated voltage of the motors in delta connections.

Two speed motors

Standard two speed motors are designed for only one rated voltage and for direct starting.

When the speed ratio is 1/2 the standard motors have one winding (Dahlander connection).

For other speed ratios the motors have two different windings.

Connection for single speed motors:

Number of pole: 2, 4, 6, 8

Synchronous speed at 50 Hz: 3000, 1500, 1000, 750

Two separate windings for two speed motors:

Number of pole: 2/6, 2/8, 4/6, 6/8

Synchronous speed at 50 Hz: 3000/1000, 3000/750, 1500/1000, 1000/750.

Dahlander system for two speed motors:

Synchronous speed at 50 Hz: 3000/1500,1500/750.

Fig. 30 - Three phase motors connecting diagrams

3.5.2 Single phase motors

Single phase motors are designed for only one rated voltage.

They have two windings (starting and main winding) which have to be connected to the capacitor supplied with the motor.

The sense of rotation can be reversed according to the connecting diagram.

Fig. 3P - Single phase motors connecting diagram

3.6 Brake connection diagrams

Other connection diagrams between motor and brake are available, including a single power supply for motor and brake, or power supply on the same terminal board.

Fig. 3Q - Motor and brake connection diagrams

3.7 Hourly start-ups allowed (Braking: n° per hour)

For motors with intermittent service, (S4) the start-ups per hour allowed depend on the service time and load characteristics, of which inertia is particularly influential. In general, as inertia increases the number of start-ups reduces.

The data given in the column for the "Braking: n° per hour" in section "4. Nominal data" in this catalogue relate to operation with loads that have an inertia 1,5 times that of the motor.

3.8 Additional terminals marking (IEC60034-8)

Motors having accessories are supplied with auxiliary terminal boards which bear the marking shown in table 3G.

Table 3E

Marking	No. terminals	Additional terminal for:	
TP1 - TP2 (warning) TP3 - TP4 (switch off)	2 2	Thermistor PTC (*)	
R1 - R2 - R3 (I sensor) R4 - R5 - R6 (II sensor) R7 - R8 - R9 (III sensor)	3 3 3	Thermistor PT 100 with 3 wires	
R11 - R12 - R13 (DE) R21 - R22 - R23 (NDE)	3 3	Thermistor PT 100 on bearing	
TB1 - TB2 (warning) TB3 - TB4 (switch off)	2 2	Normally closed bi-metallic switch (**)	
TB8 - TB9 (switch off)	2	Normally closed brake bi-metallic switch (**)	
TM1 - TM2 (warning) TM3 - TM4 (switch off)	2 2	Normally open bi-metallic switch (**)	
HE1- HE2	2	Space heaters	
U1 - U2	2	Single phase forced ventilation	
U - V - W	2	Three phase forced ventilation	
colours according manufacturer diagram	9	Encoder	
CA1 - CA2	2	Capacitor	
PE	1	Earth cable	

^(*) U rated = 6V - max 30V - (**) U rated = 250V

3.9 Protection devices

In order to protect the winding of a three-phase induction motor against thermal overloads, resulting in example from overloading and operation with only two phases, one of the following devices can be provided:

• Bimetallic type device:

it consists of 2 motor protectors connected in series. The contact is normally closed; the disc opens when the windings temperature reaches limits dangerous for the insulation system. On request, normally open device are available.

• PTC temperature sensor (thermistors):

it consists of 3 sensors connected in series embedded in stator windings. Once it reaches the operating temperature, this device quickly changes the resistance; it must be connected to a suitable releasing device (supplied only on request).

• PT 100 (RTD) thermometric resistors (from size 132 and above).

The resistance value of this device varies according to the windings temperature. They are particularly suitable for a continuous survey of the windings temperature.

For a good survey, at least two sets of PT 100 are requested; they must be connected to their proper monitoring equipment (supplied only on request).

PTC and PT 100 also offer reliable protection for operating modes other than continuous operation, e. g. short-time operation, switching operation, longtime start-up as well as for reduced cooling air flow rates and high ambient temperatures.

Motors for operation with frequency converter are always supplied with PTC thermistor temperature detectors.

Above devices have their proper terminal block located inside main box.

Upon request also available with separate terminal box.

3.10 Frequency converter driven motors

Motors with enclosures in protection type "d", "de" are designed for variable speed drives.

Chapter 4.7 lists the electrical data in different working conditions of the Ex d, Ex de motors shown in this catalogue.

Specific type-approvals are needed for motors with protection type Ex e, while in many countries motors with protection type Ex nA are strongly restricted.

When using a squirrel cage "Ex d" motor with a frequency converter, the following points must be taken into account in addition to the general selection criteria:

 The voltage (or current) fed by the frequency converter is not purely sinusoidal.

As a result it may increase the losses, vibration, and noise of the motor. Futhermore, a change in the distribution of the losses may affect the motor temperature balance.

In every case, the motor must be correctly sized according to the instructions supplied with the selected frequency converter and with our technical data.

- In a frequency converter drive the actual operating speed of the motor may deviate considerably from its rated speed.
 - For higher speeds it must be ensured that the highest permissible speed of rotation of the motor, or the critical speed of the entire equipment, is not exceeded.
 - In addition, bearing lubrication and any ventilation noise suppression arrangements will require special attention.
- The torque values shown in this catalogue for motors with constant torque at frequencies over 60Hz can be stably supplied only if the motor has a delta connection.

For example, to stably achieve these values from a 230/400V 50Hz winding motor with a 400V 50Hz mains voltage supply, the motor must have a delta connection and, consequently, the inverter must be configured so that at 50Hz it supplies a voltage of 230V.

Vice-versa, with a star connection, the values listed can be supplied only for very short periods.

- Operating periods at a speed above 3600 1/min must never exceed 10% of the entire work cycle of the motor to ensure the bearings last accordingly.
- If the rated voltage is 500V or if there is a long feeding cable between the motor and the frequency converter, the insulation of the motor must be reinforced because of the occuring voltage peaks.

A correct earthing of the motor and the driven equipment is also important to avoid bearing currents and voltages.

The features of motors for use in constant torque and those for use in quadratic torque are indicated in section 4.7.

Section 7.1 and 7.2 contains graphs showing loading curves for the use of variable torque motors.

The reference torque value (Mn) is the value indicated in the tables in section 4.1.

ITALIANO **ENGLISH**

FRANÇAIS

DEUTSCH

ESPAÑOL

4. Dati nominali

- 4.1 Motori trifase, 1 velocità, dati nominali a 400V 50Hz avviamento diretto
- 4.2 Motori trifase, 1 velocità IE2, dati nominali a 400V 50Hz avviamento diretto
- Motori trifase, 2 velocità, dati nominali a 400V 50Hz avviamento diretto, per uso generale (coppia costante) 4.3
- 4.4 Motori trifase, 2 velocità, dati nominali a 400V 50Hz avviamento diretto, per macchine centrifughe (coppia quadratica)
- 4.5 Motori monofase, 1 velocità, dati nominali a 230V 50Hz avviamento diretto
- 4.6 Motori trifase con freno, 1 o 2 velocità, per sollevamento, dati nominali a 400V 50Hz avviamento diretto
- Motori alimentati da inverter 4.7

4. Performance data

- 4.1 Three-phase motors, 1 speed, rated data at 400V 50Hz direct on line start
- 4.2 Three-phase motors, 1 speed IE2 rated data at 400V 50Hz direct on line start
- Three-phase motors, 2 speeds, rated data at 400V 50Hz direct on line start, for general purpose (constant torque) 4.3
- 4.4 Three-phase motors, 2 speeds, rated data at 400V 50Hz direct on line start, for centrifugal machines (quadratic torque)
- 4.5 Single-phase motors, 1 speed, rated data at 230V 50Hz direct on line start
- 4.6 Three-phase motors with brake, 1 or 2 speeds, for hoist applications, rated data at 400V 50Hz direct on line start
- 4.7 Motors energized by inverter

4. Données nominales

- Moteurs triphasés, 1 vitesse, données nominales à 400V 50Hz démarrage direct 4.1
- 4.2 Moteurs triphasés, 1 vitesse IE2, données nominales à 400V 50Hz démarrage direct
- Moteurs triphasés, 2 vitesses, données nominales à 400V 50Hz démarrage direct, pour usage général (couple constant) 4.3
- 4.4 Moteurs triphasés, 2 vitesses, données nominales à 400V 50Hz démarrage direct, pour machines centrifuges (couple quadratique)
- 4.5 Moteurs monophasés, 1 vitesse, données nominales à 230V 50Hz démarrage direct
- 4.6 Moteurs triphasés avec frein, 1 ou 2 vitesses, pour levage, données nominales à 400 V 50Hz démarrage direct
- 4.7 Moteurs alimentés par variateur

4. Betriebsdaten

- 4.1 Drehstrom Motoren, 1 Drehzahl, Betriebsdaten bei 400V 50Hz Direkteinschaltung
- Drehstrom Motoren, 1 Drehzahl IE2, Betriebsdaten bei 400V 50Hz Direkteinschaltung 4.2
- 4.3 Drehstrom Motoren, 2 Drehzahlen, Betriebsdaten bei 400V 50Hz Direkteinschaltung, für allgemeinen Gebrauch (konstantes Gegenmoment)
- 4.4 Drehstrom Motoren. 2 Drehzahlen. Betriebsdaten bei 400V 50Hz Direkteinschaltung, für Zentrifugalmaschinen (guadratisches Gegenmoment)
- 4.5 Einphasen Motoren, 1 Drehzahl, Betriebsdaten bei 230V 50Hz Direkteinschaltung
- 4.6 Drehstrom Motoren mit Bremse, 1 oder 2 Drehzahlen, Hubmotoren, Betriebsdaten bei 400V 50Hz Direkteinschaltung
- 4.7 Motoren mit Umrichterversorgung

Datos nominales 4.

- 4.1 Motores trifásicos, 1 velocidad, datos nominales 400V 50Hz arrangue directo
- 4.2 Motores trifásicos, 1 velocidad IE2, datos nominales 400V 50Hz arranque directo
- Motores trifásicos, 2 velocidades, datos nominales 400V 50Hz arranque directo, para uso general (par constante) 4.3
- 4.4 Motores trifásicos, 2 velocidades, datos nominales 400V 50Hz arranque directo, para máquinas centrifugas (par cuadrático)
- Motores monofásicos, 1 velocidad, datos nominales 230V 50Hz arrangue directo 4.5
- Motores trifásicos con freno, 1 o 2 velocidades, para elevación, datos nominales 400V 50Hz arranque directo 4.6
- 4.7 Motores alimentados con inverter

ITALIANO		otori trifa	200		Velocit	à		giri/min									Freno		
ENGLISH	_	ree-pha			Speed	а											Brake		
FRANÇAIS	_	•		•	Vitesse			rpm tours/min									Frein		
DEUTSCH		oteurs tr rehstrom	-		Drehza			U/min									Brems		
ESPAÑOL	100	otores tr			Velocio		3000	rev/min									Frenc		
Tipo	Potenza	Velocità	Corrente	Rendimento	Fattore	Coppia	Corrente	Coppia	Coppia	Rumoro	neità	Momento	Massa	Massa	Сорр	ia	Potenza	Frenate per	Inerzia
motore	resa				potenza		avviamento	avviamento	massima			d'inerzia						ora	totale
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Starting current	Starting torque	Maximum torque	Noise le		Moment of inertia	Mass	Mass	Torq		Power	Braking: n° per hour	Total inertia
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intensité démarrage	Couple démarrage	Couple maximal	Niveau bruit	de	Moment d'inertie	Masse	Masse	Coup	ile	Puissance	Freinages par heure	Inertie totale
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	Leistungs- faktor	Moment	Anlaufstrom	Anlauf- moment	Kippmoment	Schalldi pegel	ruck-	Trägheits- moment	Masse	Masse	Mom	ent	Leistung	Bremsungen pro Stunde	Gesamt Trägheit
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corriente de arranque	Par de arranque	Par maximo	Nivel de	e ruido	Momento de inercia	Peso	Peso	Par		Potencia	Frenados por hora	Inercia total
	P _n [KW]	n [1/min]	In [▶] [A]	η [%]	COS φ	M _n [Nm]	la/ln	Ma/Mn	M _m /M _n	[dB((A)] Lp	J▼ [kgm²]	m [ka]	m [ka]	[N S1		[VA/W]	[max n.]	[kgm ²]
63 A 2	0.18	2900	0.80	67.0	0.49	0.59	5.0	6.00	6.30	60	52	0.0001	[kg]	[kg] 22	3	4	40	240	0.00015
63 B 2 71 A 2	0.25 0.37	2858 2770	0.85 0.95	70.1 69.0	0.60 0.83	0.84 1.27	4.7 4.2	4.30 2.60	3.70 2.70	60 66	52 58	0.0001 0.0004	16 19	22 29	3	9	40 50	240 240	0.00015 0.00082
71 B 2	0.55	2830	1.35	74.9	0.79	1.86	5.3	2.40	2.70	66	58	0.0004	19	29	6	9	50	240	0.00082
80 A 2 80 B 2	0.75 1.10	2800 2845	1.84 2.68	74.5 77.0	0.79 0.77	2.56 3.69	4.9 5.3	2.58 3.00	2.90 2.90	70 70	62 62	0.0006 0.0008	26 26	36 36	12 12	17 17	60 60	240 240	0.00140 0.00160
90 S 2 90 L 2	1.50 2.20	2845 2820	3.26 4.53	79.0 80.5	0.84 0.87	5.04 7.44	5.4 6.0	2.60 2.37	2.50 2.95	77 77	69 69	0.0012 0.0015	33 33	52 52	25 25	35 35	140 140	240 240	0.00230 0.00260
100 LA 2	3.00	2910	6.64	82.5	0.79	9.85	7.5	3.20	3.40	80	72	0.0029	46	62	34	48	180	240	0.00422
112 M 2	4.00	2900	8.00	84.2	0.86	13.17	6.8	2.00	2.50	80	72	0.0074	65	100	50	70	250	240	0.00959
132 SA 2 132 SB 2	5.50 7.50	2905 2925	10.90 14.80	85.0 86.0	0.86 0.85	18.07 24.48	6.5 6.4	2.80 2.51	2.90 3.00	81 83	73 75	0.0124 0.0150	95 95	124 124	60 60	90 90	400 400	236 236	0.01648 0.01908
132 MB 2 132 ML 2	9.20 11.00	2934 2930	17.30 21.20	88.1 89.3	0.87 0.84	29.95 35.85	7.5 6.6	2.80 2.80	3.00 3.09	83 83	75 75	0.0178 0.0216	105 105	134 134	60 60	90	400 400	236 236	0.02188 0.02568
160 MA 2	11.00	2930	20.00	89.0	0.89	35.85	6.6	2.50	2.80	84	76	0.0360	180	217	90	130	480	136	0.04101
160 MB 2 160 L 2	15.00 18.50	2950 2930	26.80 33.00	89.7 89.8	0.90 0.90	48.56 60.30	7.0 7.0	2.90 2.80	3.00 3.00	84 84	76 76	0.0463 0.0534	180 195	217 230	90 90	130 130	480 480	136 136	0.05131 0.05841
180 M 2	22.00	2945	39.00	90.6	0.90	71.35	7.5	2.80	2.70	83	74	0.0818	230						
200 LA 2 200 LB 2	30.00 37.00	2975 2975	54.00 65.00	91.6 91.8	0.88 0.90	96.29 118.72	8.5 7.9	3.50 2.80	2.70 2.50	87 87	77 77	0.1625 0.1947	285 305						
225 M 2	45.00	2975	79.00	92.3	0.89	144.42	9.0	2.60	3.00	89	79	0.2902	385						
250 M 2	55.00	2980	95.00	92.5	0.90	176.24	7.5	2.50	2.80	90	79	0.4197	505						
280 S 2 280 M 2	75.00 90.00	2982 2985	134.00 160.00	93.2 93.0	0.87 0.88	240.11 287.93	7.5 9.0	2.70 3.10	3.30 3.80	88 88	76 76	0.5200 0.6300	842 881						
315 S 2 315 M 2	110.00 132.00	2980 2970	191.40 228.00	93.3 93.0	0.89 0.90	352.40 424.00	8.3 7.9	3.00 2.50	3.30 3.30	90 90	76 76	0.7000 0.7500	932 948						
315 LA 2 315 LB 2	132.00 132.00 160.00	2984 2984	222.00 268.50	94.0 94.5	0.92 0.91	422.47 512.21	7.9 7.0 7.0	2.00 1.65	2.30 2.00	99 99	85 85	1.8800 2.2500	1340 1430						
315 LC 2	200.00	2980	336.00	94.5	0.91	640.72	7.3	1.70	2.00	99	85	2.7900	1550						

$$\begin{split} I'_n &= I_n \cdot \frac{400}{U'} &\quad \text{(I'_n = corrente a U' Volt);} \\ &\quad \text{(I'_n = current at U' Volt);} \\ &\quad \text{(I'_n = intensité à U' Volt);} \\ &\quad \text{(I'_n = Strom mit U' Volt);} \\ &\quad \text{(I'_n = corriente de U' Voltios);} \end{split}$$

ITALIANO	M	otori trifa	C P		Velocità	,		giri/min									Frenc		
ENGLISH	_	ree-phas			Speed			rpm									Brak		
FRANÇAIS	_	oteurs tri			Vitesse			tours/min									Frein		
DEUTSCH		ehstrom		-	Drehzal	hl		U/min									Brems		
ESPAÑOL		otores tri	fásicos	1	Velocid	ad	1500	rev/min									Frenc)	
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	Corrente avviamento	Coppia avviamento	Coppia massima	Rumo	rosità	Momento d'inerzia	Massa	Massa	Copp	oia	Potenza	Frenate per ora	Inerzia totale
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Starting current	Starting torque	Maximum torque	Noise	level	Moment of inertia	Mass	Mass	Torq	ue	Power	Braking: n° per hour	Total inertia
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intensité démarrage	Couple démarrage	Couple maximal	Niveau bruit	ı de	Moment d'inertie	Masse	Masse	Coup	ole	Puissance	Freinages par heure	Inertie totale
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	Leistungs- faktor	Moment	Anlaufstrom	Anlauf- moment	Kippmoment	Schall pegel	druck-	Trägheits- moment	Masse	Masse	Mon	nent	Leistung	Bremsungen pro Stunde	Gesamt Trägheit
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corriente de arranque	Par de arranque	Par maximo		de ruido	Momento de inercia	Peso	Peso	Par		Potencia	Frenados por hora	Inercia total
	P _n	n [1/min]	In [®] [A]	η [%]	COS φ	M _n [Nm]	la/ln	Ma/Mn	M _m /M _n	[dE	B(A)] Lp	J▼ [kgm²]	m [kg]	m [kg]	[N S1	lm] S4	[VA/W]	[max n.]	[kgm ²]
63 A 4	0.12	1400	0.62	57.60	0.50	0.82	4.5	3.6	3.80	52	44	0.0002	16	22	3	4	40	240	0.00025
63 B 4 71 A 4	0.18 0.25	1340 1372	0.67 0.80	61.50 60.00	0.62 0.74	1.28 1.72	4.2 3.0	2.3	2.53 2.60	52 56	44 48	0.0002 0.0006	16 19	22 29	3	9	40 50	240 240	0.00025 0.00102
71 B 4	0.25	1390	1.10	69.00	0.74	2.53	3.5	2.2	2.76	56	48	0.0000	19	29	6	9	50	240	0.00102
80 A 4 80 B 4	0.55 0.75	1380 1390	1.60 2.06	69.00 73.00	0.71 0.72	3.86 5.15	4.0 4.0	2.3 2.3	2.50 2.60	59 59	51 51	0.0009 0.0013	26 26	36 36	12 12	17 17	60 60	240 240	0.00170 0.00210
90 S 4	1.10	1420	2.80	76.30	0.74	7.38	5.0	2.5	3.00	62	54	0.0020	33	52	25	35	140	240	0.00310
90 L 4 100 LA 4	1.50 2.20	1400 1427	3.54 5.15	77.50 80.50	0.79 0.77	10.22 14.72	5.0 5.0	2.3 2.5	2.50 2.60	62	54 55	0.0026	33 46	52 62	25 34	35 48	140 180	240 240	0.00370 0.00562
100 LB 4	3.00	1436	7.07	81.70	0.75	19.95	4.8	2.4	3.10	63	55	0.0053	46	62	34	48	180	240	0.00662
112 M 4	4.00	1440	9.01	83.60	0.76	26.49	7.0	2.9	3.20	68	60	0.0103	65	100	50	70	250	240	0.01249
132 SB 4 132 MB 4 132 ML 4	5.50 7.50 8.80	1455 1460 1455	11.90 17.20 18.50	87.00 86.30 87.00	0.77 0.73 0.79	36.11 49.05 57.77	6.3 5.8 6.8	2.4 2.7 2.5	2.80 3.40 3.51	72 75 75	64 67 67	0.0250 0.0324 0.0405	95 95 105	134 134 134	60 60 60	90 90 90	400 400 400	240 240 240	0.02908 0.03648 0.04458
160 MB 4 160 L 4	11.00 15.00	1465 1470	22.90 31.40	89.00 89.50	0.78 0.77	71.66 97.42	6.2 5.9	2.5 2.5	3.00 2.99	77 77	69 69	0.0627 0.0801	180 195	217 217	90 90	130 130	480 480	240 240	0.06771 0.08511
180 M 4 180 L 4	18.50 22.00	1470 1470	39.00 44.00	89.80 91.00	0.76 0.79	120.23 142.90	6.0 7.0	3.2 2.3	3.00 2.50	79 79	70 70	0.1236 0.1493	230 245	420 435	300 300	400 400	140 140	150 150	0.13560 0.16130
200 LB 4	30.00	1470	54.00	91.20	0.88	194.91	6.5	2.5	2.90	82	72	0.2456	305	495	300	400	140	150	0.25760
225 S 4	37.00	1480	69.00	91.70	0.84	238.68	7.1	2.7	3.00	84	73	0.3737	360	710	600	800	140	150	0.38570
225 M 4 250 M 4	45.00 55.00	1480	85.00 97.00	92.50 92.90	0.83	290.30 353.77	6.2 7.2	2.4	2.80 2.90	84	73 75	0.4479	385 540	750 835	600	800	140 140	150 100	0.45990
280 S 4	75.00	1480	136.00	93.00	0.86	483.95	6.3	2.2	2.40	82	70	0.9500	875	1170	600	800	140	100	0.96200
280 M 4 315 S 4	90.00	1485	163.00 198.50	93.00 94.00	0.86 0.85	578.00 706.40	7.3 8.3	3.0	3.10 3.49	82	70 71	1.1200	901 971	1196 1266	600	800	140 140	100 100	1.13200
315 M 4 315 LA 4	132.00 132.00	1485 1488	242.00 240.50	93.00 94.10	0.85 0.84	848.00 847.01	7.1 7.2	2.7 1.9	2.90 1.90	85 90	71 76	1.3300 3.7200	984 1190						
315 LB 4 315 LC 4	160.00 200.00	1488 1494	286.50 364.00	94.00 95.00	0.86 0.84	1026.88 1278.43	7.1 8.8	2.0	2.10 2.10	90 90	76 76	4.1100 5.2100	1455 1640						
010 20 4	200.00	1454	004.00	30.00	0.04	1270.40	0.0	2.0	2.10	30	70	0.2100	1040						
		1															1		

$$\begin{split} ^{\blacktriangleright} I'_n &= I_n \cdot \frac{400}{U'} \quad \text{(I'}_n = \text{corrente a U' Volt);} \\ & \text{(I'}_n = \text{current at U' Volt);} \\ & \text{(I'}_n = \text{intensité à U' Volt);} \\ & \text{(I'}_n = \text{Strom mit U' Volt);} \\ & \text{(I'}_n = \text{corriente de U' Voltios);} \end{split}$$

ITALIANO		Aotori trifa	ase		Velocit	à		giri/min									Frenc)	
ENGLISH	-	Three-phas		s	Speed			rpm									Brake		
FRANÇAIS	_	Noteurs tri			Vitesse	9		tours/min	1								Frein		
DEUTSCH		Drehstrom	-		Drehza	ahl		U/min									Brems	::::::::::::::::::::::::::::::::::::	
ESPAÑOL		/lotores tri	ifásicos		Velocio	dad	1000	rev/min									Frenc)	
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	Corrente avviamento	Coppia avviamento	Coppia massima	Rumoro	osità	Momento d'inerzia	Massa	Massa	Сорр	ia	Potenza	Frenate per ora	Inerzia totale
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Starting current	Starting torque	Maximum torque	Noise I	evel	Moment of inertia	Mass	Mass	Torqu	ue	Power	Braking: n° per hour	Total inertia
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intensité démarrage	Couple démarrage	Couple maximal	Niveau bruit	de	Moment d'inertie	Masse	Masse	Coup	le	Puissance	Freinages par heure	Inertie totale
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	Leistungs- faktor	Moment	Anlaufstrom	Anlauf- moment	Kippmoment	Schallo pegel	lruck-	Trägheits- moment	Masse	Masse	Mom	ent	Leistung	Bremsungen pro Stunde	Gesamt Trägheit
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corriente de arranque	Par de arranque	Par maximo	Nivel d	e ruido	Momento de inercia	Peso	Peso	Par		Potencia	Frenados por hora	Inercia total
	Pn [KW]	n [1/min]	In [▶] [A]	η [%]	COS φ	M _n [Nm]	la/ln	Ma/Mn	M _m /M _n	[dB Lw	(A)] Lp	J▼ [kgm²]	m [kg]	m [kg]	[N S1		[VA/W]	[max n.]	[kgm ²]
63 B 6	0.09	850	0.65	38.00	0.52	0.99	2.0	2.3	2.20	48	40	0.0002	16	22	3	4	40	240	0.00025
71 A 6 71 B 6	0.18 0.26	945 918	0.92 1.00	55.00 60.00	0.51 0.63	1.82 2.71	3.7 3.4	3.7 2.6	3.70 2.60	50 50	42 42	0.0007 0.0010	19 19	29 29	6	9	50 50	240 240	0.00112 0.00142
80 A 6	0.37	930	1.60	58.00	0.58	3.80	3.1	2.9	3.20	53	45	0.0022	26	36	12	17	60	240	0.00300
80 B 6 90 S 6	0.55 0.75	930 910	1.80 2.20	70.00 70.00	0.65 0.71	5.79 7.85	2.8	2.0 1.8	2.10 2.10	53 54	45 46	0.0027	26 33	36 52	12 25	17 35	60 140	240 240	0.00350 0.00450
90 L 6	1.10	935	3.35	73.00	0.65	11.21	3.4	2.0	2.15	54	46	0.0049	33	52	25	35	140	240	0.00600
100 LB 6	1.50 2.20	950 960	3.80 6.11	76.00 80.00	0.75 0.65	15.11 21.84	4.2 5.2	2.0	2.30	63	55 57	0.0088	46 65	62 100	34 50	48 70	180 250	240 240	0.01012
132 SB 6	3.00	950	7.50	80.00	0.72	30.16	5.8	1.5	1.68	68	60	0.0323	95	134	60	90	400	240	0.03638
132 MB 6 132 ML 6	4.00 5.50	970 960	9.50 12.30	81.40 84.00	0.75 0.77	39.38 54.69	6.1 4.7	1.7 1.8	1.90 2.00	68 68	60 60	0.0395 0.0506	95 105	134 134	60 60	90 90	400 400	240 240	0.04358 0.05468
160 MB 6 160 L 6	7.50 11.00	950 950	15.70 21.50	85.00 87.00	0.81 0.85	75.33 110.57	4.8 6.2	2.1 1.7	2.14 2.00	72 72	64 64	0.0919 0.1218	180 195	217 217	90 90	130 130	480 480	240 240	0.09691 0.12681
180 L 6	15.00	960	29.00	88.00	0.86	149.20	5.3	2.1	2.73	76	67	0.2263	245	435	300	400	140	150	0.23830
200 LA 6 200 LB 6	18.50 22.00	975 980	38.25 45.00	90.30 90.50	0.77 0.78	181.21 214.35	5.9 6.0	1.6 1.6	2.10 1.60	79 79	69 69	0.2986 0.3064	295 305	490 515	300 300	400 400	140 140	150 150	0.31060 0.31840
225 M 6	30.00	985	61.20	91.00	0.78	290.86	5.8	2.0	2.50	81	70	0.7617	385	750	600	800	140	150	0.77370
250 M 6 250 ML 6	37.00 45.00	990 988	73.35 93.60	91.80 93.00	0.79 0.75	356.91 434.60	6.7 8.6	2.0 3.0	2.41 1.9	81 81	70 70	1.0475 1.2300	520 590	813 905	600 600	800 800	140 140	150 150	1.05950 1.24200
280 S 6 280 M 6	45.00 55.00	982 980	90.50 109.00	89.00 91.00	0.80 0.81	436.29 535.00	4.9 4.7	2.5 2.3	2.80 2.40	77 77	65 65	1.1400 1.3600	858 894	1153 1189	600 600	800 800	140 140	150 150	1.15200 1.37200
315 S 6	75.00	990	151.80	93.20	0.77	722.51	6.1	2.2	2.40	79	65	1.6300	865	1160		800	140	150	1.84200
315 M 6 315 LA 6	90.00 90.00	990 992	117.10 171.80	92.90 93.00	0.79 0.82	868.13 865.31	5.3 6.8	1.8 1.7	1.80	79 84	65 70	1.8300 5.7300	991 1370						
315 LB 6 315 LC 6	110.00 132.00	992 995	184.50 243.00	94.00 94.00	0.91 0.83	1058.91 1264.00	8.6 5.3	1.2 2.1	1.70 2.10	84 84	70 70	5.9400 8.4500	1450 1520						
													400						

						,													
ITALIANO	_	otori trifa			Velocit	a		giri/min									Frenc		
ENGLISH	_	hree-pha		S	Speed			rpm									Brak		
FRANÇAIS		oteurs tr			Vitesse			tours/min	l								Frein		
DEUTSCH	-	rehstrom			Drehza			U/min									Brems	se	
ESPAÑOL	4.1 M	otores tri	ifásicos		Velocio	lad	750	rev/min									Frenc		
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	Corrente avviamento	Coppia avviamento	Coppia massima	Rumoro	osità	Momento d'inerzia	Massa	Massa	Copp	oia	Potenza	Frenate per ora	Inerzia totale
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Starting current	Starting torque	Maximum torque	Noise la	evel	Moment of inertia	Mass	Mass	Torq	ue	Power	Braking: n° per hour	Total inertia
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intensité démarrage	Couple démarrage	Couple maximal	Niveau bruit	de	Moment d'inertie	Masse	Masse	Coup	ole	Puissance	Freinages par heure	Inertie totale
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	Leistungs- faktor	Moment	Anlaufstrom	Anlauf- moment	Kippmoment	Schalld pegel	lruck-	Trägheits- moment	Masse	Masse	Mon	nent	Leistung	Bremsungen pro Stunde	Gesamt Trägheit
Tipo de	Potencia	Velocidad	Corriente	Rendimiento	Factor de	Par	Corriente de	Par de	Par maximo	Nivel de	e ruido	Momento	Peso	Peso	Par		Potencia	Frenados	Inercia
motor	proporcionada Pn	n	In▶	η	potencia COS φ	M _n	arranque Ia/In	arranque Ma/Mn	M _m /M _n	[dB	(A)1	de inercia		m	[N	lm]	[VA/W]	por hora [max n.]	total [kgm ²]
	[KW]	[1/min]	[A]	[%]		[Nm]				Lw	Ĺp	[kgm ²]	[kg]	[kg]	S1	S4			
63 B 8	0.05	590	0.44	27.00	0.60	0.79	1.60	1.6	1.8	47	39	0.0002	16	22	3	4	40	240	0.00025
71 B 8	0.15	600	0.57	54.00	0.75	2.54	2.10	1.3	1.5	48	40	0.0010	19	29	6	9	50	240	0.00142
80 A 8 80 B 8	0.18 0.25	707 690	1.00 1.00	51.00 61.00	0.51 0.60	2.43 3.53	3.10 3.30	1.9 1.4	2.0 1.7	49 49	41 41	0.0022 0.0027	26 26	36 36	12 12	17 17	60 60	240 240	0.00300 0.00350
90 S 8 90 L 8	0.37 0.55	680 680	1.30 1.90	75.00 80.00	0.55 0.52	5.20 7.73	2.20 2.10	1.5 1.5	1.8 1.8	53 53	45 45	0.0034 00049	33 33	52 52	25 25	35 35	140 140	240 240	0.00450 0.00600
100 LA 8	0.75	700 675	2.85	67.50	0.57	10.20	2.60	2.0	2.2	60	52	0.0088	46 46	62 62	34	48 48	180 180	240 240	0.01012
100 LB 8 112 M 8	1.10 1.50	720	3.10 4.40	75.00 76.00	0.68 0.65	15.50 20.00	2.70 4.10	1.8 1.9	2.2	60	52 54	0.0088	46 65	100	34 50	70	250	240	0.01012
132 SB 8	2.20	720	6.50	75.00	0.66	29.20	4.00	1.8	2.3	66	58	0.0323	95	134	60	90	400	240	0.03638
132 MB 8 160 MA 8	3.00 4.00	720 718	8.50 9.70	82.00 85.00	0.63 0.70	40.25 53.20	3.90 4.50	1.7 2.3	2.3	66 70	58 62	0.0506	105 180	134 217	90	90	400	240 240	0.05468 0.09691
160 MB 8 160 L 8	5.50 7.50	725 720	14.00 18.00	76.00 80.00	0.77 0.77	73.00 99.50	3.90 4.20	2.2 2.4	2.5 2.8	70 70	62 62	0.0919 0.1218	180 195	217 217	90 90	130 130	480 480	240 240	0.09691 0.12681
180 L 8	11.00	720	23.00	87.40	0.79	146.40	5.70	2.2	2.4	73	64	0.2791	245	435	300	400	140	150	0.29110
200 LB 8	15.00	735	35.00	89.00	0.70	196.00	5.30	1.6	2.1	75	65	0.4595	305	495	300	400	140	150	0.47150
225 S 8	18.50	735	42.25	88.00	0.72	240.33	5.80	2.4	2.7	79	68	0.6337	360	710	600	800	140	150	0.64570
225 M 8 250 M 8	22.00 30.00	730 740	46.00 61.00	88.00 94.00	0.79 0.76	288.00 386.90	5.00 6.20	2.1 1.8	2.3	79 79	68 68	0.7617 1.2961	385 550	750 840	600	800	140	150 150	0.77370 1.30810
280 S 8	37.00	730	71.00	90.00	0.86	492.30	5.50	1.9	2.5	72	60	1.5100	875	1170	600	800	140	150	1.52200
280 M 8 315 S 8	45.00 55.00	739 742	83.00 115.00	94.00 93.00	0.83 0.74	581.53 707.88	5.30 8.70	1.4 2.7	1.9 2.9	72 75	60 61	1.7900	901 965	1196 1260		800	140	150 150	1.80200 2.19200
315 M 8 315 LA 8	75.00 55.00	735 740	142.00 117.10	93.00 93.20	0.82 0.77	971.00 709.53	7.00 6.60	2.0 1.7	2.5 2.0	75 77	61 63	2.1800 5.7300	991 1330	1200				1.00	2.10200
315 LB 8 315 LC 8	90.00 110.00	744 743	164.50 202.00	95.00 94.00	0.84 0.84	1164.00 1414.00	6.40 6.40	1.7 1.7	2.5 2.7	77 77	63 63	6.9400 8.4500	1470 1590						
313 LG 6	110.00	143	202.00	94.00	0.04	1414.00	0.40	1.7	2.1	11	03	0.4000	1090						

ITALIANO		Motori trifas	se IE2	-	Velocità			giri/min									
ENGLISH	_	Three-phase		E2	Speed			rpm									
FRANÇAIS	_	Moteurs trip		_	Vitesse			tours/min									
DEUTSCH		Drehstrom I		_	Drehzahl			U/min									
ESPAÑOL		Motores trif			Velocidad		3000	rev/min									
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	Corren	l te Coppia		oppia nassima	Rumoro	sità	Momento d'inerzia	Massa			
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Startin curren			Maximum orque	Noise le	evel	Moment of inertia	Mass			
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intensi	té Couple	C	ouple naximal	Niveau bruit	de	Moment d'inertie	Masse			
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	Leistungs- faktor	Moment		-	- K	ippmoment	Schalld pegel	ruck-	Trägheits- moment	Masse			
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corrier arranq	nte de Par de	Pa	ar maximo	Nivel de	ruido	Momento de inercia	Peso			
	Pn [KW]	n [1/min]	In [®] [A]	η [%]	COS φ	Mn [Nm]		In Ma/	M _n	M _m /M _n	[dB(A)] Lp	J▼ [kgm²]	m [kg]			
80 A 2 80 B 2	0.75 1.10	2847 2830	1.80 2.50	77.4 79.6	0.78 0.80	2.52				2.60 2.50	70 70	62 62	0.0006 0.0008	26 26			
90 S 2	1.50	2880	3.30	81.3	0.81	4.97	7 6.	4 2.7	0	2.60	77	69	0.0012	33			
90 L 2 100 LA 2	2.20 3.00	2880 2905	4.80 6.45	83.2 84.6	0.80 0.79	7.29 9.85				4.00 3.40	77 80	69 72	0.0015 0.0029	33 46			
112 M 2	4.00	2900	7.75	85.8	0.79	13.16				3.40	80	72	0.0029	65			
132 SA 2	5.50	2920	10.55	87.0	0.87	17.98	8 7.	2 2.8	80	2.90	81	73	0.0124	95			
132 SB 2 160 MA 2	7.50	2920	14.45	88.1	0.85	24.5				3.60	83	75 76	0.0150	95			
160 MB 2 160 L 2	11.00 15.00 18.50	2935 2945 2930	19.90 26.65 32.30	89.4 90.3 90.9	0.89 0.90 0.91	35.79 48.62 60.24	2 7.	6 3.4	10	3.80 3.50 3.20	84 84 84	76 76 76	0.0360 0.0463 0.0534	180 180 195			
180 M 2	22.00	2952	38.30	91.3	0.90	71.1	5 9.	2 3.0	00	2.90	83	74	0.0818	230			
200 LA 2 200 LB 2	30.00 37.00	2970 2960	51.25 62.50	92.0 92.5	0.92 0.93	96.42 119.30				2.95 1.95	87 87	77 77	0.1625 0.1947	285 605			
225 M 2	45.00	2973	76.95	92.9	0.91	144.57				2.30	89	79	0.2902	385			
250 M 2	55.00	2975	95.20	93.2	0.90	176.64	4 8.	6 2.5	50	2.80	90	79	0.4197	505			
280 S 2 280 M 2	75.00 90.00	2978 2984	128.90 157.70	93.8 94.1	0.90 0.88	240.49 287.93				2.50 3.30	88 88	76 76	0.5200 0.6300	842 881			
315 S 2 315 LA 2	110.00 132.00	2980 2983	189.10 218.90	94.3 94.6	0.89 0.92	352.50 422.44				2.00 2.20	90 99	76 85	0.7000 1.8800	932 1340			
315 LB 2 315 LC 2	160.00 200.00	2984 2980	267.70 333.70	94.8 95.0	0.91 0.91	516.06 640.70	6 7.	0 1.7	0	2.10 1.90	99 99	85 85	2.2500 2.7900	1430 1550			
	1	1											400				<u>I</u>

$$\begin{split} I'_n &= I_n \cdot \frac{400}{U'} &\quad \text{(I'_n = corrente a U' Volt);} \\ &\quad \text{(I'_n = current at U' Volt);} \\ &\quad \text{(I'_n = intensité à U' Volt);} \\ &\quad \text{(I'_n = Strom mit U' Volt);} \\ &\quad \text{(I'_n = corriente de U' Voltios);} \end{split}$$

ITALIANO		otori trifas	o IEO	-	Velocità		airi	/min								
ENGLISH		hree-phase		IE2	Speed		rpn									
FRANÇAIS		oteurs trip		_	Vitesse			rs/min								
DEUTSCH		rehstrom l		_	Drehzahl		U/n									
ESPAÑOL		otores trifa			Velocidad			/min								
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	Corrente avviamento	Coppia avviamento	Coppia massima	Rumor	osità	Momento d'inerzia	Massa		Т	
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Starting current	Starting torque	Maximum torque	Noise	level	Moment of inertia	Mass			
Moteur	Puissance	Vitesse	Intensité	Rendement	Facteur de	Couple	Intensité	Couple	Couple	Niveau	ı de	Moment d'inertie	Masse			
Motor Typ	mécanique Leistung	Drehzahl	Strom	Wirkungsgrad	puissance Leistungs-	Moment	démarrage ! Anlaufstrom		maximal Kippmoment	bruit Schall	druck-	Trägheits-	Masse			
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corriente de arranque	moment Par de arranque	Par maximo	pegel Nivel o	le ruido	moment Momento de inercia	Peso			
	Pn [KW]	n [1/min]	In [®]	η [%]	COS φ	M _n [Nm]		Ma/Mn	M _m /M _n	[dE Lw	B(A)] Lp	J▼ [kgm²]	m [kg]			
80 B 4	0.75	1430	2.05	79.6	0.67	5.0		3.00	3.20	59	51	0.0013	26			
90 S 4 90 L 4	1.10 1.50	1430 1430	2.70 3.75	81.4 82.8	0.73 0.72	7.3 ⁴ 10.02		3.30 3.70	3.60 4.40	62 62	54 54	0.0020 0.0026	33 33			
100 LA 4 100 LB 4	2.20 3.00	1450 1450	5.20 6.70	84.3 85.5	0.72 0.76	14.47 19.98		2.50 3.00	3.10 3.30	63 63	55 55	0.0043 0.0053	46 46			
112 M 4	4.00	1435	8.80	86.6	0.76	26.35		3.50	4.00	68	60	0.0103	65			
132 SB 4 132 MB 4	5.50 7.50	1450 1444	11.70 14.65	87.7 88.7	0.78 0.83	36.37 49.59		2.20 3.10	2.70 3.40	72 75	64 67	0.0250 0.0324	95 95			
160 MB 4	11.00 15.00	1444 1468	23.10	89.8	0.77 0.79	71.57 97.63	7 6.0	2.30	3.00 3.00	77	69 69	0.0627	180			
160 L 4 180 M 4	18.50	1465	30.50 36.65	90.6 91.2	0.80	120.17	7 7.3	2.70 3.10	3.60	77 79	70	0.0801 0.1236	195 230			
180 L 4 200 LB 4	22.00 30.00	1470 1470	42.20 53.30	91.6 92.3	0.82	142.89		3.48 1.80	4.40 2.50	79 82	70 72	0.1493 0.2456	245 305			
225 S 4	37.00	1472	66.40	92.7	0.87	239.79	9 6.0	2.00	2.40	84	73	0.3737	360			
225 M 4 250 M 4	45.00 55.00	1474 1475	80.60 96.50	93.1 93.5	0.87 0.88	290.87 353.69		2.10 2.90	2.50 2.70	84	73 75	0.4479 0.7673	385 540			
280 S 4 280 M 4	75.00 90.00	1485 1480	134.90	94.0	0.85 0.86	483.80 577.60		2.70	2.90 3.50	82 82	70 70	0.9500 1.1200	875			
315 S 4	110.00	1487	160.40 198.00	94.2 94.5	0.85	706.40		3.00 3.20	3.60	85	71	1.1200	901 971			
315 LA 4 315 LB 4 315 LC 4	132.00 160.00 200.00	1488 1488 1494	239.00 283.00 361.00	94.7 94.9 95.1	0.84 0.86 0.84	847.0° 1026.88 1278.43	8 7.1	1.90 2.00 2.00	2.20 2.00 2.20	90 90 90	76 76 76	3.7200 4.1100 5.2100	1190 1455 1640			
												400				

ITALIANO	M	otori trifas	e IF2	-	Velocità		air	i/min								
ENGLISH	_	ree-phase		E2	Speed		rpi									
FRANÇAIS		oteurs trip		_	Vitesse		_	 urs/min								
DEUTSCH		ehstrom N		_	Drehzahl			min								
ESPAÑOL		otores trifa			Velocidad			//min								
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	Corrente avviamento	Coppia	Coppia massima	Rumo	orosità	Momento d'inerzia	Massa			
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Starting current	Starting torque	Maximum torque	Noise	e level	Moment of inertia	Mass			
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intensité démarrage	Couple démarrage	Couple maximal	Nivea bruit	u de	Moment d'inertie	Masse			
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	·	Moment		-	Kippmoment	-	lldruck-	Trägheits- moment	Masse			
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corriente de arranque		Par maximo		de ruido	Momento de inercia	Peso			
	Pn [KW]	n [1/min]	In [®] [A]	η [%]	COS φ	M _n [Nm]	la/ln	Ma/Mn	M _m /M _n	[dl Lw	B(A)] Lp	J▼ [kgm²]	m [kg]		1	
90 S 6	0.75	955	2.38	75.9	0.60	7.50	5.0	2.50	2.80	54	46	0.0034	33			
90 L 6	1.10	920	2.95	78.1	0.69	11.41		2.00	2.30	54	46	0.0049	33			
100 LB 6 112 M 6	1.50 2.20	948	3.85 5.60	79.8	0.71	15.11		2.00	2.20	63	55 67	0.0088	46 65			
132 SB 6	3.00	964 960	5.60 7.32	81.8 83.3	0.69	21.79		2.40	2.80	65 68	67 60	0.0172 0.0323	65 95			
132 MB 6	4.00	960	9.10	84.6	0.72	39.67	5.7	2.00	2.20	68	60	0.0395	95			
132 ML 6 160 MB 6	5.50 7.50	968 970	13.25 16.20	86.0 87.2	0.70 0.77	54.27 73.94		2.90 3.00	3.20 3.30	68	60	0.0506 0.0919	105 180			
160 L 6	11.00	965	22.95	87.2 88.7	0.77	108.86		2.30	2.50	72 72	64 64	0.0919	195			
180 L 6	15.00	975	31.45	89.7	0.77	146.85		2.50	3.00	76	67	0.2263	245			
200 LA 6 200 LB 6	18.50 22.00	980 985	39.38 47.85	90.4 90.9	0.75 0.73	180.28 213.30		1.80 2.30	1.90 2.60	79 79	69 69	0.2986 0.3064	295 305			
225 M 6	30.00	985	62.96	91.7	0.75	290.86		2.80	3.20	81	70	0.7617	385			
250 M 6	37.00	985	71.10	92.2	0.82	358.43	3 7.0	2.00	2.40	81	70	1.0475	520			
280 S 6 280 M 6	45.00 55.00	982 985	87.58 109.32	92.7 93.1	0.80 0.78	437.63 533.25		2.50 2.30	2.80 2.40	77 77	65 65	1.1400 1.3600	858 894			
315 S 6 315 LA 6	75.00 90.00	990 992 992	150.04 172.74	93.7 94.0	0.77 0.80	723.48 866.43	6.1 6.8	2.20 1.70	2.40 1.85	79 84 84	65 70 70	1.6300 5.7300	865 1370			
315 LB 6 315 LC 6	110.00 132.00	995	185.02 236.94	94.3 94.6	0.91 0.85	1058.97 1266.93		1.20 1.90	1.70 2.00	84	70	5.9400 8.4500	1450 1520			
														<u> </u>		<u> </u>
												400				

$$\begin{split} I'_n &= I_n \cdot \frac{400}{U'} &\quad \text{(I'_n = corrente a U' Volt);} \\ &\quad \text{(I'_n = current at U' Volt);} \\ &\quad \text{(I'_n = intensité à U' Volt);} \\ &\quad \text{(I'_n = Strom mit U' Volt);} \\ &\quad \text{(I'_n = corriente de U' Voltios);} \end{split}$$

ITALIANO	М	lotori trifa	ise	Ve	locità		giri/min	per uso genera	ale - 1 a	avvolgi	imento Dal	hlander				Frenc)	
ENGLISH	TI	hree-pha	se motor	s Sp	eeds		rpm	for general	purpos	:e - 1 и	vinding Da	hlander				Brake		
FRANÇAIS		loteurs tr		_	esses		tours/mi	n pour usage géné	éral - 1	enrou	lement Dal	hlander				Frein		
DEUTSCH		rehstrom		n Dr	ehzahlen	3000	U/min	für allgemeinen Gei	brauch	- 1 Wi	icklung Dal	hlander				Brems	 se	
ESPAÑOL		lotores tri	ifásicos	2 Ve	locidades	1500	_	para uso g	eneral	- 1 dev	vanado Dal	hlander				Frenc)	
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	Corrente avviamento	Coppia avviamento	Rumor	osità	Momento d'inerzia	Massa	Massa	Сорр	ia	Potenza	Frenate per ora	Inerzia totale
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Starting current	Starting torque	Noise i	level	Moment of inertia	Mass	Mass	Torq	ue	Power	Braking: n° per hour	Total inertia
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intensité démarrage	Couple démarrage	Niveau bruit	de	Moment d'inertie	Masse	Masse	Coup	le	Puissance	Freinages par heure	Inertie totale
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	Leistungs- faktor	Moment	Anlaufstrom	Anlauf- moment	Schalle pegel	druck-	Trägheits- moment	Masse	Masse	Mom	ent	Leistung	Bremsungen pro Stunde	Gesamt Trägheit
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corriente de arranque	Par de arranque	Nivel d	le ruido	Momento de inercia	Peso	Peso	Par		Potencia	Frenados por hora	Inercia total
	P _n [KW]	n [1/min]	In [®] [A]	η [%]	COS φ	M _n [Nm]	la/ln	Ma/Mn	[dB Lw	(A)] Lp	J ▼ [kgm²]	m [kg]	m [kg]	[N S1	1	[VA/W]	[max n.]	[kgm ²]
63 B 24	0.20	2740	0.52	68	0.83	0.7	3.5	1.9	60	52	0.0002	16	22	3	4	40	240	0.00015
71 A 24	0.15 0.30	1310 2820	0.59 0.86	49 71	0.74 0.71	1.1	2.2 3.7	1.6	66	58	0.0006	19	29	6	9	50	240	0.00082
71 B 24	0.20 0.45	1360 2805	0.76 1.26	54 62	0.70 0.83	1.4 1.5	3.8 4.6	1.5 2.5	66	58	0.0009	19	29	6	9	50	240	0.00082
80 A 24	0.30 0.60	1420 2800	1.20 1.60	59 68	0.63 0.87	2.0	3.4 4.9	2.3 2.8	70	62	0.0009	26	36	12	17	60	240	0.00140
80 B 24	0.45 0.80	1400 2800	1.20 2.10	69 64	0.84 0.85	3.1 2.7	4.7 4.4	2.3 1.8	70	62	0.0013	26	36	12	17	60	240	0.00160
90 S 24	0.60 1.25	1400 2780	1.70 2.90	72 65	0.71 0.96	4.1	4.1 5.5	1.7 2.0	77	69	0.0020	33	52	25	35	140	240	0.00230
90 L 24	0.90 1.60	1380 2850	2.40 3.70	64 71	0.85 0.90	6.2 5.4	4.6 5.1	1.8 2.4	77	69	0.0026	33	52	25	35	140	240	0.00260
100 M 24	1.20 2.35	1410 2780	3.10 5.40	73 70	0.77 0.90	8.1 8.1	4.5 6.5	2.3 2.4	80	72	0.0043	46	62	34	48	180	240	0.00562
100 L 24	1.85 3.00	1400 2880	4.50 7.30	72 73	0.82 0.77	12.6 10.0	5.4 6.6	2.1 2.6	80	72	0.0053	46	62	34	48	180	240	0.00662
112 M 24	2.40	1420 2860	5.70 8.60	79 84	0.77	16.1	5.2 7.0	2.4	80	72	0.0103	65	100	50	70	250	240	0.00959
	3.30	1450	6.80	65	0.80	13.4 21.7	6.2	2.2										
132 \$ 24	5.90 4.80	2880 1430	11.50 10.00	80 81	0.93 0.85	19.6 32.1	7.2 6.4	2.2 2.1	83	75	0.0150	95	124	60	90	400	236	0.01648
132 MB 24	7.50 5.50	2880 1430	14.50 13.50	88 73	0.85 0.80	24.9 36.8	8.9 7.2	2.2 2.1	83	75 75	0.0178	95	134	60	90	400 400	236 236	0.02188
132 L 24	8.00 6.00	2890 1440	19.00 17.00	72 63	0.85 0.80	26.5 39.3	7.5 6.3	2.3 2.2	83	75	0.0216	105	134					
160 M 24	11.00 8.80	2940 1440	22.00 22.00	80 78	0.90 0.74	35.7 58.4	7.3 6.5	2.3 2.1	84	76	0.0627	180	217	90	130	480	136	0.04101
160 L 24	15.00 12.00	2945 1450	29.50 28.50	77 81	0.95 0.75	48.6 79.0	7.5 6.6	2.4 2.3	84	76	0.0801	195	230	90	130	480	136	0.05841
180 M 24	18.50 15.00	2930 1460	36.00 29.50	82 83	0.90 0.88	60.3 98.1	6.4 5.6	2.1 2.0	83	74	0.1270	230						
180 L 24	22.00 18.50	2960 1465	42.60 38.00	89 90	0.84 0.78	71.2 121.1	6.6 5.8	2.2 2.1	83	74	0.1488	245						
200 LB 24	30.00 24.00	2970 1480	54.60 44.60	90 93	0.88 0.84	97.3 156.5	7.7 3.9	2.2 2.5	87	77	0.2436	315						
225 S 24	33.00 30.00	2955 1475	66.00 55.00	80 91	0.90 0.87	106.6 194.2	6.8 6.2	2.2 2.1	89	79	0.3762	355						
225 M 24	40.00 37.00	2965 1480	77.00 69.00	82 88	0.92 0.88	128.8 238.7	6.8 6.2	2.2 2.2	89	79	0.4451	380						
250 M 24	50.00 45.00	2970 1475	92.00 84.00	88 89	0.89 0.87	160.8 291.3	6.9 6.4	2.1 2.3	90	79	0.4611	450						
280 S 24	66.00 52.00	2950 1480	123.30 102.80	91 85	0.85 0.86	200.7	9.4 8.2	2.8 2.7	88	76	0.5200	875						
280 M 24	79.00 60.00	2950 1480	145.90 122.90	91 84	0.86 0.84	242.8 290.4	9.2 8.0	2.7 2.8 2.6	88	76	0.6300	901						
315 S 24	90.00	2955	166.10	89	0.88	323.2	9.4	2.9 2.9	90	76	0.7000	971						
315 M 24	70.00 95.00 75.00	1485 2965 1485	133.80 173.30 140.10	90 89 91	0.84 0.89 0.85	334.4 347.9 353.7	8.0 9.5 8.1	2.9 2.8	90	76	0.7500	984						
315 LA 24	0	0	0	0	0	0	0	0	0	0	0	0						
315 LB 24	0	0	0	0	0	0	0	0	0	O	0	0						
315 LC 24	0	0	0	0	0	0	0	O O O	0	О	0	0						
							-											

$$\begin{split} ^{\bullet} I'_n = I_n \cdot \frac{400}{U'} & \text{ (I'}_n = \text{corrente a U' Volt);} \\ & \text{ (I'}_n = \text{current at } U' \text{ Volt);} \\ & \text{ (I'}_n = \text{intensit\'e \`a U' Volt);} \\ & \text{ (I'}_n = \text{Strom mit } U' \text{ Volt);} \\ & \text{ (I'}_n = \text{corriente de U' Voltios);} \end{split}$$

ITALIANO	N	Motori trifa	ase	V	elocità		giri/min	per	uso genera	le - 1 a	vvolgi	imento Dal	nlander				Frenc)	
ENGLISH	7	Three-pha	se motor	s s	peeds		rpm	f	or general p	ourpose	9 - 1 и	vinding Dal	hlander				Brake	,	
FRANÇAIS	N	Moteurs tr	iphasés	V	itessees		tours/mi	n pour	usage géné	ral - 1	enrou	lement Dal	nlander				Frein		
DEUTSCH	4.	Drehstrom	Motoren	, 1	rehzahlen	1500	U/min	für allge	meinen Gel	orauch	- 1 Wi	cklung Dai	hlander				Brems	ie	
ESPAÑOL		Motores tr	ifásicos	2 1	elocidades	750	rev/min		para uso g	eneral -	- 1 dev	anado Dal	nlander				Frenc)	
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	Corrente avviamento	Coppia avviamento		Rumoro	osità	Momento d'inerzia	Massa	Massa	Сорр	ia	Potenza	Frenate per ora	Inerzia totale
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Starting current	Starting torque		Noise I	evel	Moment of inertia	Mass	Mass	Torqu	ие	Power	Braking: n° per hour	Total inertia
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intensité démarrage	Couple démarrage		Niveau bruit	de	Moment d'inertie	Masse	Masse	Coup	le	Puissance	Freinages par heure	Inertie totale
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgra	nd Leistungs- faktor	Moment	Anlaufstrom	Anlauf- moment		Schalla pegel	lruck-	Trägheits- moment	Masse	Masse	Mom	ent	Leistung	Bremsungen pro Stunde	Gesamt Trägheit
Tipo de motor	Potencia proporcionada	Velocidad a	Corriente	Rendimiento	Factor de potencia	Par	Corriente de arranque	Par de arranque		Nivel de	e ruido	Momento de inercia	Peso	Peso	Par		Potencia	Frenados por hora	Inercia total
	P _n [KW]	n [1/min]	In ⁵ [A]	η [%]	COS φ	M _n [Nm]	la/ln	Ma/Mn		[dB	(A)] Lp	J▼ [kgm²]	m [kg]	m [kg]	S1		[VA/W]	[max n.]	[kgm ²]
71 A 48	0.17 0.09	1330 670	0.57 0.48	74 48	0.58 0.57	1.2 1.3	3.2 2.4	1.5 1.4		56	48	0.0007	19	29	3	9	50	240	0.00102
71 B 48	0.20 0.10	1400 700	0.46 0.71 0.67	68 35	0.80 0.52	1.3 1.4 1.4	5.6 3.0	2.1 3.0		56	48	0.0010	19	29	3	9	50	240	0.00132
80 A 48	0.30 0.15	1400 710	0.90 1.05	67 42	0.72 0.48	2.1 2.0	4.3 2.7	2.0 1.7		59	51	0.0022	26	36	6	17	60	240	0.00170
80 B 48	0.40 0.20	1400 710	0.95 1.12	71 48	0.46 0.86 0.54	2.0 2.7 2.7	4.2 1.3	1.7 1.8 2.6		59	51	0.0027	26	36	6	17	60	240	0.00210
90 S 48	0.60 0.30	1380 700	1.60 1.70	64 47	0.84 0.54	4.1 4.1	3.0 2.1	2.4 2.1		62	54	0.0034	33	52	12	35	140	240	0.00310
90 L 48	0.90 0.45	1370 710	2.00 1.80	74 65	0.90 0.60	6.4 6.1	4.0 2.9	1.8 1.6		62	54	0.0049	33	52	12	35	140	240	0.00370
100 LA 48	1.25 0.60	1400 700	3.20 3.00	81 61	0.70 0.47	8.5 8.2	3.8 3.0	2.0 1.8		63	55	0.0088	46	62	25	48	180	240	0.00562
100 LB 48	1.60 0.80	1445 700	3.60 4.00	73 59	0.88 0.49	10.6 10.9	4.8 3.7	1.9 1.6		63	55	0.0088	46	62	25	48	180	240	0.00662
112 M 48	2.55 1.25	1420 710	5.40 4.90	78 66	0.90 0.61	17.2 16.8	5.1 4.1	1.8 2.5		68	60	0.0172	65	100	34	70	250	240	0.01249
132 S 48	3.30 1.85	1430 720	7.20 8.30	77 58	0.86 0.56	22.5 24.5	5.0 3.6	1.7 1.6		72	64	0.0323	95	134	50	90	400	240	0.02908
132 MB 48	4.80 2.40	1410 700	10.50 8.10	77 68	0.86 0.63	32.5 32.0	5.3 4.9	1.8 1.7		75	67	0.0506	95	134	50	90	400	240	0.03648
132 L 48	5.50 3.00	1450 720	11.00 13.50	87 72	0.83 0.45	36.2 40.0	5.6 4.6	1.8 1.8		75	67	0.0506	105	134	50	90	400	240	0.04458
160 M 48	7.50 4.80	1450 730	16.00 15.00	82 83	0.82 0.56	49.4 62.8	5.8 4.8	1.9 1.7		77	69	0.0919	180	217	60	130	480	240	0.06771
160 L 48	10.00 6.60	1440 710	21.00 22.00	76 73	0.91 0.59	66.3 88.8	6.9 2.8	1.8 1.8		77	69	0.1218	195	217	60	130	480	240	0.08511
180 M 48	13.00 8.10	1474 735	26.50 22.50	81 85	0.87 0.61	84.1 105.2	6.6 5.3	2.0 2.0		79	70	0.2067	230	435	90	400	140	150	0.13560
180 L 48	16.00 9.90	1472 735	33.00 27.00	82 88	0.86 0.60	103.8 128.6	8.3 6.2	2.5 2.5		79	70	0.2067	245	435	90	400	140	150	0.16130
200 LB 48	20.00 13.00	1480 730	37.30 39.00	91 86	0.85 0.56	129.0 170.2	7.3 4.6	2.8 2.9		82	72	0.2436	315	495	300	400	140	150	0.25760
225 S 48	25.00 17.00	1460 720	47.50 44.50	82 79	0.93 0.70	163.5 225.5	6.5 5.2	2.1 1.9		84	73	0.3762	355	710	600	800	140	150	0.38570
225 M 48	30.00 20.00	1485 735	57.30 61.00	90 88	0.84 0.54	193.6 261.0	7.7 4.5	2.0 1.5		84	73	0.4451	380	750	600	800	140	150	0.45990
250 M 48	40.00 26.00	1480 735	73.00 67.50	91 91	0.88 0.62	258.4 336.8	6.4 5.5	2.2 2.0		86	75	0.4611	450	835	600	800	140	100	0.77930
280 S 48	59.00 34.00	1485 740	110.00 101.00	91 90	0.86 0.55	380.1 448.5	9.0 4.5	2.4 1.9		82	70	0.9500	875	0	0	0	0	0	0
280 M 48	71.00 41.00	1480 740	132.00 105.00	92 90	0.85 0.62	456.3 524.8	5.5 3.7	1.8 1.4		82	70	1.1200	901	0	0	0	0	0	0
315 S 48	80.00 47.00	1485 735	152.90 116.90	90 88	0.84 0.66	514.5 610.7	5.4 3.8	1.9 1.5		85	71	1.2700	971	0	О	0	0	0	0
315 M 48	85.00 50.00	1480 735	158.80 123.00	91 89	0.85 0.66	548.5 649.7	4.9 3.8	1.8 1.4		85	71	1.3300	984						
315 LA 48	0	0	0	Ö	OO	0	O	0		0	О	0	0						
315 LB 48	0	0	0	О	О	0	О	0		0	О	0	0						
315 LC 48	0	0	0	О	0	0	0	0		0	0	0	О						
																			<u> </u>

$$\begin{split} \textbf{I}'_n &= \textbf{I}_n \cdot \frac{400}{\textbf{U}'} & (\textbf{I}'_n = \text{corrente a U' Volt}); \\ & (\textbf{I}'_n = \text{current at U' Volt}); \\ & (\textbf{I}'_n = \text{intensité à U' Volt}); \\ & (\textbf{I}'_n = \text{Strom mit U' Volt}); \\ & (\textbf{I}'_n = \text{corriente de U' Voltios}); \end{split}$$

ITALIANO	Mo	tori trifas	ie.		Velocità			giri/min	per us	so aene	rale	e - 2 avvol	aimenti			
ENGLISH	_	ree-phase		_	Speeds			rpm	•			pose - 2 w	_			
FRANÇAIS	_	teurs trip		_	Vitesses			tours/min	pour usag		-		-			
DEUTSCH		ehstrom l		-	Drehzahle	en	1500	U/min	für allgemeine							
ESPAÑOL		tores trifa		2	Velocidad	es		rev/min	-			ral - 2 dev				
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	Corrent		Ru	umorosità		Momento d'inerzia	Massa			
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Starting current	Starting torque	No	oise level		Moment of inertia	Mass			
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intensit démarra	é Couple	Niv	veau de		Moment d'inertie	Masse			
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	· ·	Momen		-	Sc	challdruck egel	۲-	Trägheits- moment	Masse			
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corrient	e de Par de		vel de rui	do	Momento de inercia	Peso			
	P _n [KW]	n [1/min]	In [A]	η [%]	COS φ	M _n [Nm		n Ma/Mn	i	[dB(A)] w L		J▼ [kgm²]	m [kg]			
71 B 46	0.20	1420	0.76	60	0.63	1.3	3 4.5			56 4	-	0.0010	19			
80 A 46	0.10 0.40	900 1360	0.57 1.00	50 80	0.51 0.72	1.1	3.5	1.5	5	59 5	1	0.0027	26			
80 B 46	0.20 0.50	900 1380	0.86 1.40	56 70	0.60 0.73	2. ⁻ 3. ⁴	4 3.7	1.5	5	59 5	1	0.0027	26			
90 S 46	0.30 0.65	910 1400	0.95 2.00	68 63	0.67 0.75	3.2 4.4			6	62 5	4	0.0034	33			
90 L 46	0.45 0.95	910 1455	1.70 2.70	55 80	0.70 0.65	4.7 6.4			6	62 5	4	0.0049	33			
100 LA 46	0.60 1.40	920 1400	1.60 3.80	71 70	0.78 0.76	6.3 9.8			6	63 5	5	0.0088	46			
100 L 46	0.90 1.85	930 1415	2.90 4.20	64 77	0.70 0.84	9.2 12.7	2 4.2 7 4.5	1.6 1.8	6	63 5	5	0.0088	46			
112 M 46	1.10 2.40 1.60	900 1420 920	3.05 5.20 4.20	71 79 71	0.73 0.84 0.78	11.5 16.1 16.0	1 6.6	1.8	6	68 6	0	0.0172	65			
132 S 46	3.00	1475	8.30	83	0.65	20.0	0.6	2.0	7	72 6	4	0.0323	95			
132 MA 46	2.00 4.00	960 1460	5.50 9.40	75 79	0.71 0.78	19.7 26.2	2 6.2	2.0	7	75 6	7	0.0395	95			
132 MB 46	2.60 4.40	960 1450	8.40 10.50	72 76	0.62 0.80	25.9 29.0	0 6.4	2.0	7	75 6	7	0.0506	105			
132 L 46	3.00 5.15 3.30	950 1470 965	8.90 12.00 9.50	79 83 79	0.62 0.75 0.64	30.2 33.5 32.7	5 6.9	1.9	7	75 6	7	0.0506	105			
160 M 46	6.60 4.40	1460 960	14.50 10.50	79 87	0.84 0.70	43.2 43.8			7	77 6	9	0.0919	180			
160 L 46	8.80 5.90	1460 970	18.50 13.50	78 88	0.88 0.72	57.6 58.	3 7.0	2.0	7	77 6	9	0.1218	195			
180 M 46	11.00 7.50	1470 980	21.50 18.50	88 84	0.84 0.70	71.5 73.			7	79 70	0	0.2067	230			
180 L 46	13.00 8.80	1475 980	25.00 20.50	88 86	0.85 0.72	84.2 85.3	2 8.9	2.3	7	79 7	0	0.2067	245			
200 LA 46	16.00 11.00	1480 985	33.50 24.50	82 80	0.84 0.81	103.2 106.6			8	82 7	2	0.2986	295			
200 LB 46	18.50 13.00	1485 985	40.10 28.70	88 90	0.76 0.73	119.0 126.0	9.8	2.2	8	82 7	2	0.3503	315			
225 S 46	22.00 15.00	1485 995	42.50 33.50	89 88	0.84 0.74	141.8 144.4	3 8.1	2.6	8	84 7	3	0.6965	355			
225 M 46	26.00 16.50	1480 990	48.40 33.90	91 90	0.85 0.74	167.1 159.2	7 7.1	2.6	8	84 7	3	0.6965	380			
250 M 46	30.00 20.00	1480 990	55.90 41.30	90 90	0.87 0.78	195.2 193.5			8	86 7	5	0.7216	450			
280 S 46	56.00 34.00	1480 985	109.80 78.30	91 86	0.81 0.73	361.4 329.6			8	82 7	0	0.9500	875			
280 M 46	65.00 40.00	1480 985	124.50 89.60	92 86	0.82 0.75	419.4	4 8.2	2.8	8	82 7	0	1.1200	901			
315 S 46	75.00 46.00	1485 990	147.00 103.30	91 87	0.81 0.74	482.3 443.7	3 8.3	2.9	8	85 7 ⁻	1	1.2700	971			
315 M 46	80.00 50.00	1488 990	145.00 104.40	96 93	0.84 0.74	518.0 482.0	6.9	2.0	8	85 7	1	1.3300	984			
315 LA 46	O))	O) O	O.74 O	402.t				c		0	0			
315 LB 46	0	0	0	O	0	0	0	0		Э С		0	0			
315 LC 46	0	0	0	О	0	0	0	О) c		0	0			

$$\begin{split} ^{\bullet} I'_n &= I_n \cdot \frac{400}{U'} & \text{ (I'}_n = \text{corrente a U' Volt);} \\ & \text{ (I'}_n = \text{current at U' Volt);} \\ & \text{ (I'}_n = \text{intensit\'e \`a U' Volt);} \\ & \text{ (I'}_n = \text{Strom mit U' Volt);} \\ & \text{ (I'}_n = \text{corriente de U' Voltios);} \end{split}$$

ITALIANO	N	lotori trifas	e A	-	Velocità	1		giri/mi	n	ner	uso de	enerale	- 2 avvolg	imenti			
ENGLISH	_	hree-phase		_	Speeds	-		rpm	-	•			ose - 2 wi				
FRANÇAIS	_	loteurs trip		_	Vitessees	-		tours/r	min		_		- 2 enroule	-			
DEUTSCH		rehstrom l		_	Drehzahle		1000	U/min		für allgemei							
ESPAÑOL	-	lotores trifa		2	Velocidade	-	750	rev/mi	n				al - 2 deva	_			
Tipo	Potenza	Velocità	Corrente	Rendimento	Fattore	Coppia		rente	Coppia	μα	Rumor		Momento	Massa			
motore	resa			Efficiency	potenza		avv	iamento	avviamento				d'inerzia				
Motor type	Rated output	Speed	Current		Power factor	Torque	cur	rting rent	Starting torque		Noise		Moment of inertia	Mass			
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	dér	ensité narrage	Couple démarrage		Niveau bruit		Moment d'inertie	Masse			
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	Leistungs- faktor	Mome	nt Ani	aufstrom	Anlauf- moment		Schalle pegel	druck-	Trägheits- moment	Masse			
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par		riente de anque	Par de arranque		Nivel d	le ruido	Momento de inercia	Peso			
	Pn [KW]	n [1/min]	In [A]	η [%]	COS φ	Mı [Nn		la/ln	Ma/Mn		[dB Lw	B(A)] Lp	J▼ [kgm²]	m [kg]			
71 B 68	0.12	960	0.73	45	0.55	1.	.2	3.0	2.4		50	42	0.0010	19			
80 A 68	0.08 0.15	930	0.48 0.67	32 46	0.77 0.70	1.		1.4 4.0	1.0 1.5		53	45	0.0027	26			
80 B 68	0.13 0.25	690 920	0.62 1.00	51 51	0.59 0.71	1.	.8	3.2 2.8	1.4 1.6		53	45	0.0027	26			
	0.15	680	0.81	46	0.58	2	.1	2.6	1.3								
90 S 68	0.35 0.25	910 640	1.30	53 59	0.74 0.61	3	.7	3.2	1.4		54	46	0.0034	33			
90 L 68	0.60 0.30	920 690	2.12 1.55	53 41	0.72 0.58	6 4		3.2 2.6	1.5 1.7		54	46	0.0049	33			
100 LA 68	0.80 0.55	920 700	2.30 1.90	66 67	0.76 0.62	8. 7.		1.7 1.8	1.5 1.5		63	55	0.0088	46			
100 LB 68	1.00 0.65	920 680	3.30 2.55	54 50	0.82 0.74	10 9		3.0 2.6	1.1 1.4		63	55	0.0088	46			
112 M 68	1.50 1.00	960 710	4.10 3.20	74 65	0.71 0.69	14. 13.		1.0 1.2	1.7 1.6		65	57	0.0172	65			
132 S 68	1.85	960	5.20	73	0.70	18	.4	4.1	1.6		68	60	0.0323	95			
132 MA 68	1.30 2.55	715 965	4.20 6.80	68 75	0.66 0.72	17. 25.	.2	4.0 4.2	1.7 1.8		68	60	0.0395	95			
132 MB 68	1.85 3.00	720 970	5.80 7.40	68 79	0.68 0.74	24 29	.5	4.1 5.4	1.8 1.9		68	60	0.0506	105			
160 M 68	2.00 4.00	730 980	6.00 10.80	73 84	0.66 0.65	26. 39.		3.9 6.0	1.8		72	64	0.0919	180			
160 L 68	2.80 5.50	730 985	9.50 14.60	77 86	0.56 0.64	36 53		4.8 7.7	2.7 2.5		72	64	0.1218	195			
180 M 68	4.00 6.50	732 970	11.60 15.00	81 83	0.63 0.75	52 64		5.6 4.1	2.3 1.7		76	67	0.2067	230			
180 L 68	5.00 8.00	720 965	12.50 17.50	77	0.75 0.75 0.78	66 79	.3	4.3	1.8				0.2067	245			
	6.00	715	15.00	85 78	0.74	80	.1	4.4 4.2	1.8 1.9		76	67					
200 LA 68	9.90 7.50	970 710	21.00 18.00	85 80	0.80 0.75	97. 100.		4.6 4.3	1.7 1.7		79	69	0.2986	295			
200 LB 68	12.00 8.80	990 736	33.40 22.20	88 87	0.59 0.66	115 114		7.0 4.9	2.4 1.7		79	69	0.3503	315			
225 S 68	15.00 11.00	970 720	32.50 24.50	82 83	0.81 0.78	147. 145.		4.8 4.7	1.8 1.8		81	70	0.6965	355			
225 M 68	17.00 13.00	975 725	37.00 30.50	81 80	0.82 0.77	166 171	.5	4.9 4.6	1.8 1.9		81	70	0.6965	380			
250 M 68	22.00 16.00	980 730	48.50 37.00	82 82	0.80 0.76	214	.4	4.7 4.5	1.9 1.8		81	70	0.7216	450			
280 S 68	37.00	990	80.30	90	0.74	356	.9	7.3	3.1		77	65	1.1400	858			
280 M 68	25.00 44.00	740 995	57.00 97.00	88 91	0.72 0.72	322 422	.3	5.3 7.5	2.7 3.0		77	65	1.3600	894			
315 S 68	30.00 52.00	740 990	70.40 112.80	88 90	0.70 0.74	387. 501.		5.2 7.9	2.7 3.4		79	65	1.6300	965			
315 M 68	36.00 60.00	745 995	81.20 132.30	89 91	0.72 0.72	461 575	.5	5.4 7.8	2.9 3.3		79	65	1.8300	997			
315 LA 68	40.00 O	743 O	91.80	90	0.70	514	.1	5.3	2.9		0	0	0	0			
315 LB 68	0		0	0	0	0		0	0		0	0	0	0		1	
315 LC 68	0		0	0	0	0		0	0		0	0	0	0		1	
			~	~	-			-	_			_	_	-		1	
																ı	
											<u> </u>						

 $I'_n = I_n \cdot \frac{400}{U'} \quad (I'_n = \text{corrente a U' Volt});$ $(I'_n = \text{current at U' Volt});$ $(I'_n = \text{intensité à U' Volt});$ $(I'_n = \text{Strom mit U' Volt});$ $(I'_n = \text{corriente de U' Voltios});$

ITALIANO	Mo	tori trifası	A		'elocità		giri/min	per macchine centrif	uahe - 1	avvolc	imento Da	hlander			
ENGLISH	_	ree-phase		_	Speeds		rpm	for centrifugal	•						
FRANÇAIS		teurs tripl		_	itesses		tours/min	pour machines cent							
DEUTSCH		ehstrom M		_	rehzahlen	3000	U/min	für Zentrifugalm	•						
ESPAÑOL		tores trifá			'elocidades	1500	rev/min	para máquinas cei							
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	Corrente avviamento	Coppia avviamento	Rumor	osità	Momento d'inerzia	Massa		Т	
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Starting current	Starting torque	Noise	level	Moment of inertia	Mass			
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intensité démarrage	Couple démarrage	Niveau bruit	ı de	Moment d'inertie	Masse			
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgra	ad Leistungs- faktor	Moment	Anlaufstrom	Anlauf- moment	Schalle pegel	druck-	Trägheits- moment	Masse			
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corriente de arranque	Par de arranque		le ruido	Momento de inercia	Peso			
	P _n [KW]	n [1/min]	ln • [A]	η [%]	COS φ	M _n [Nm]	la/In	M _a /M _n	[dB	B(A)] Lp	J▼ [kgm²]	m [kg]			
63 B 24	0.24 0.07	2800 1340	0.86 0.34	55 43	0.75 0.71	0.8 0.5	4.1 2.1	3.0 1.9	60	52	0.0001	16			
71 A 24	0.37	2750	1.00	74	0.72	1.3	3.6	2.0	66	58	0.0004	19			
71 B 24	0.09 0.50	1380 2810	0.27 1.50	69 67	0.70 0.72	0.6 1.7	2.9 2.5	2.0 1.8	66	58	0.0004	19			
80 A 24	0.14 0.75	1380 2820	0.42 1.90	72 70	0.70 0.80	1.0 2.5	4.5 4.0	2.0 1.7	70	62	0.0006	26			
80 B 24	0.18 0.11	1400 2800	0.48 2.60	70 75	0.76 0.82	1.2	3.6 4.2	2.1 1.8	70	62	0.0008	26			
	0.25	1380	0.71	66	0.76	1.7	3.7	2.0							
90 S 24	1.50 0.37	2780 1400	3.20 1.00	81 68	0.84 0.78	5.2 2.5	5.8 4.1	1.9 2.1	77	69	0.0012	33			
90 L 24	2.00 0.51	2760 1380	4.30 1.30	77 68	0.88 0.82	7.0 3.5	4.3 3.2	1.9 2.1	77	69	0.0015	33			
100 M 24	2.60 0.62	2810 1410	5.60 1.60	75 69	0.89 0.81	8.8 4.2	7.7 7.0	2.2 2.0	80	72	0.0029	46			
100 L 24	3.30 0.75	2870 1480	7.70 2.20	78 57	0.80 0.85	11.0 4.8	5.6 5.1	2.2 2.0	80	72	0.0029	46			
112 M 24	4.41 1.10	2930 1450	8.90 2.30	81 82	0.88 0.83	14.4 7.2	7.9 6.9	2.5 2.7	80	72	0.0074	65			
132 S 24	6.50 2.00	2910 1450	12.50 4.80	83 75	0.90 0.80	21.3 13.2	6.2 6.0	2.1 1.9	83	75	0.0150	95			
132 M 24	8.50 2.50	2945 1460	16.70 5.50	89 88	0.82 0.74	27.6 16.4	8.8 5.9	3.4 2.8	83	75	0.0178	95			
132 L 24	9.20 2.80	2910 1440	17.50 5.70	90 87	0.84 0.82	30.2 18.6	6.9 6.6	2.3	83	75	0.0216	105			
160 M 24	12.00	2955	21.50	89	0.90	38.7	8.1	2.1	84	76	0.0360	180			
160 L 24	3.00 16.00 4.40	1470 2945 1455	6.45 29.60 8.90	84 87 87	0.81 0.90 0.82	19.6 51.6 29.0	4.9 7.0 5.3	2.5 2.5 2.6	84	76	0.0534	195			
180 M 24	18.00	2965	37.00	79	0.89	58.0	8.4	2.6	83	74	0.0750	230			
180 L 24	5.00 24.00	1465 2960	11.40 44.50	75 90	0.85 0.87	32.6 77.4	7.1 9.7	2.3	83	74	0.0750	245			
200 LB 24	6.00 30.00	1480 2970	11.80 51.20	89 92	0.83 0.92	39.0 96.5	9.6 7.2	3.1 2.0	87	77	0.1449	315			
225 S 24	8.00 37.00	1480 2960	15.60 68.00	88 86	0.86 0.91	52.2 119.4	7.2 7.3	1.9 2.1	89	79	0.1714	355			
225 M 24	9.20 44.00	1460 2970	21.00 78.00	74 91	0.86 0.90	60.2 141.5	7.0 9.0	2.0	89	79	0.2656	380			
	11.50	1480	21.80	91	0.84	74.3	8.4	2.4							
250 M 24	51.00 13.50	2970 1475	93.00 26.50	89 87	0.89 0.85	164.0 87.4	6.5 6.2	2.2 1.8	90	79	0.2809	450			
280 S 24	70.00 25.00	2960 1480	130.80 49.40	91 85	0.85 0.86	225.8 161.3	9.4 8.2	2.8 2.7	88	76	0.5200	875			
280 M 24	86.00 31.00	2960 1480	158.80 63.50	91 84	0.86 0.84	277.5 200.0	9.2 8.0	2.8 2.6	88	76	0.6300	901			
315 S 24	100.00 36.00	2965 1485	181.50 75.50	91 83	0.87 0.83	322.1 231.5	9.4 8.0	2.9 2.9	90	76	0.7000	971			
315 M 24	110.00 40.00	2970 1485	196.30 83.90	92 84	0.88 0.82	353.7 257.2	9.5 8.1	2.9 2.8	90	76	0.7500	948			
315 LA 24	O	0	O.30	0	O.02	0	O.1	0	0	0	0	0			
315 LB 24	0	0	О	0	0	0	0	0	0	О	0	0			
315 LC 24	0	0	0	0	0	0	0	0	0	О	0	0			

$$\begin{split} ^{\bullet} I'_n = I_n \cdot \frac{400}{U'} & \text{ (I'}_n = \text{corrente a U' Volt);} \\ & \text{ (I'}_n = \text{current at U' Volt);} \\ & \text{ (I'}_n = \text{intensité à U' Volt);} \\ & \text{ (I'}_n = \text{Strom mit U' Volt);} \\ & \text{ (I'}_n = \text{corriente de U' Voltios);} \end{split}$$

ITALIANO	Mc	otori trifas	e e	Veld	ocità		giri/min	per macchine centrifug	nhe - 1 avvolu	nimento Da	hlander			
ENGLISH	_	ree-phase		_	eds		rpm	for centrifugal n						
FRANÇAIS	_	teurs trip			sses		tours/min	pour machines centrif						
DEUTSCH		ehstrom N		_	hzahlen	1500	U/min	für Zentrifugalma						
ESPAÑOL		otores trifa			ocidades	750	rev/min	para máquinas cent						
Tipo	Potenza	Velocità	Corrente	Rendimento	Fattore	Coppia	Corrente	Coppia	Rumorosità	Momento	Massa		Т	
motore Motor type	resa Rated	Speed	Current	Efficiency	potenza Power	Torque	avviamento Starting	avviamento Starting	Noise level	d'inerzia Moment	Mass			
Moteur	output Puissance	Vitesse	Intensité	Rendement	factor Facteur de	Couple	current Intensité	torque Couple	Niveau de	of inertia Moment	Masse			
type Motor Typ	mécanique Leistung	Drehzahl	Strom	Wirkungsgrad	puissance	Moment	démarrage Anlaufstrom	démarrage Anlauf-	bruit Schalldruck-	d'inertie Trägheits-	Masse			
Tipo de	Potencia	Velocidad	Corriente	Rendimiento	faktor Factor de	Par	Corriente de	moment Par de	pegel Nivel de ruido	moment Momento	Peso			
motor	proporcionada				potencia		arranque	arranque		de inercia			-	
	P _n [KW]	n [1/min]	ln • [A]	η [%]	COS φ	Mn [Nm]	la/In	Ma/Mn	[dB(A)] Lw Lp	J▼ [kgm²]	m [kg]			
71 A 48	0.20 0.05	1420 700	0.82 0.39	50 32	0.71 0.59	1.4 0.7	3.5 1.8	1.7 1.4	56 48	0.0009	19			
71 B 48	0.30 0.07	1390 680	0.95 0.44	58 34	0.78 0.70	2.1 1.0	3.7 1.8	1.8 1.6	56 48	0.0009	19			
80 A 48	0.45 0.10	1410 700	1.40 0.48	66 44	0.70 0.69	3.0 1.4	2.9 4.4	2.0 1.8	59 51	0.0013	26			
80 B 48	0.10 0.65 0.14	1420 695	1.67 0.69	70 47	0.80 0.63	4.4 1.9	4.4 4.3 2.5	1.8 2.0	59 51	0.0013	26			
90 S 48	0.90	1420	2.15	76	0.80	6.1	4.3	1.8	62 54	0.0020	33			
90 L 48	0.22 1.20 0.30	700 1440 700	0.85 3.25 1.50	61 77 56	0.61 0.70 0.52	3.0 8.0 4.1	2.4 4.3 3.7	1.5 2.0 1.8	62 54	0.0026	33			
100 M 48	1.90	1410	4.70	74	0.79	13.0	4.3	1.8	63 55	0.0053	46			
100 L 48	0.44 2.20	700 1405	1.90 5.30	58 73	0.58 0.82	6.2 15.0	2.4 4.8	1.6 2.3	63 55	0.0053	46			
112 M 48	0.55 3.00	695 1440	2.00 6.50	63 80	0.64 0.85	7.6 20.2	2.8 5.1	1.9 1.7	68 60	0.0103	65			
132 S 48	0.75 4.41	710 1445	2.50 9.30	67 86	0.66 0.80	10.1 29.3	2.9 5.5	1.5 2.2	72 64	0.0250	95			
132 M 48	1.10 5.90	710 1455	3.90 12.00	74 86	0.56 0.83	15.0 38.7	2.9 5.3	1.7 2.0	75 67	0.0324	95			
132 L 48	1.50 7.50	715 1440	4.80 16.00	76 83	0.59 0.82	20.0 49.8	2.7 6.9	1.6 2.0	75 67	0.0405	105			
160 M 48	1.85 8.80	710 1470	6.20 18.00	72 89	0.60 0.80	25.0 57.7	4.5 7.0	1.8 2.1	77 69	0.0627	180			
160 L 48	2.50 12.00	730 1470	7.75 25.10	82 89	0.58 0.77	33.1 77.7	4.0 5.9	1.8 2.1	77 69	0.0801	195			
	3.20	715	10.50	79	0.56	42.5	3.1	2.0						
180 M 48	16.00 4.00	1480 735	36.00 13.80	89 83	0.72 0.51	103.3 52.0	7.8 4.0	3.3 2.3	79 70	0.1270	230			
180 L 48	22.00 5.50	1470 732	45.00 17.20	89 82	0.80 0.56	143.0 71.8	6.7 3.2	2.6 1.9	79 70	0.1488	245			
200 LB 48	26.00 6.00	1480 735	49.40 15.60	92 91	0.83 0.61	168.2 78.2	9.1 4.5	3.4 2.6	82 72	0.2436	315			
225 S 48	32.00 8.10	1470 725	65.00 21.00	92 91	0.77 0.62	207.9 106.8	6.5 5.5	3.6 2.8	84 73	0.3762	355			
225 M 48	37.00 9.20	1475 730	67.00 22.00	92 90	0.87 0.67	236.6 120.0	6.9 4.6	2.8 2.4	84 73	0.4451	380			
250 M 48	45.00 11.00	1475 730	87.00 27.90	94 91	0.80 0.63	291.3 143.3	5.8 5.0	2.4 2.2	86 75	0.4611	450			
280 S 48	69.00	1480	128.90 49.80	91	0.85	445.2	5.4	1.9	82 70	0.9500	875			
280 M 48	20.00 83.00 25.00	720 1480 720	49.80 155.10 63.90	88 91 87	0.66 0.85 0.65	265.3 535.6 331.6	3.8 5.5 3.7	1.5 1.8 1.4	82 70	1.1200	901			
315 S 48	94.00	1485	173.70	92	0.85	604.5	5.4	1.9	85 71	1.2700	971			
315 M 48	28.00 100.00	725 1485	70.50 182.60	87 92	0.66 0.86	368.8 643.1	3.8 4.9	1.5 1.8	85 71	1.3300	984			
315 LA 48	30.00 O	725 •••	75.80 •••	88 O	0.65 O	395.2 •	3.8 O	1.4 O	0 0	0	0			
315 LB 48	0	0	0	0	0	0	0	О	0 0	0	0			
315 LC 48	0	0	0	0	0	О	0	О	0 0	0	0			

$$\begin{split} ^{\blacktriangleright} l'_n &= l_n \cdot \frac{400}{U'} & \text{ (I'}_n = \text{corrente a U' Volt);} \\ & \text{ (I'}_n = \text{current at U' Volt);} \\ & \text{ (I'}_n = \text{intensité à U' Volt);} \\ & \text{ (I'}_n = \text{Strom mit U' Volt);} \\ & \text{ (I'}_n = \text{corriente de U' Voltios);} \end{split}$$

ITALIANO	М	otori trifas	se.	Vel	ocità		giri/min		per macchine	e centri	ifuahe	- 2 avvolc	imenti			
ENGLISH		hree-phase			eds		rpm		•			ines - 2 wi				
FRANÇAIS	_	oteurs trip		Vite	esses		tours/min		our machine	s centr	ifuge	- 2 enroule	ements			
DEUTSCH	4. D	rehstrom l	Motoren	Dre	hzahlen	1500	U/min		für Zentrifu	galmas	schine	n - 2 Wick	lungen			
ESPAÑOL	4.4 M	otores trif	ásicos	2 Vel	ocidades	1000	rev/min		para máquir	nas cer	ıtrífug	as - 2 deva	anados			
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	Corrente avviamento	Coppia avviamento		Rumoro	sità	Momento d'inerzia	Massa			
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Starting current	Starting torque		Noise le	evel	Moment of inertia	Mass			
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intensité démarrage	Couple démarrage		Niveau bruit	de	Moment d'inertie	Masse			
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	faktor	Moment	Anlaufstrom	Anlauf- moment		Schalld pegel		Trägheits- moment	Masse			
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corriente de arranque	Par de arranque		Nivel de		Momento de inercia	Peso			
	Pn [KW]	n [1/min]	In • [A]	η [%]	COS φ	Mn [Nm]	la/In	M _a /M _n		[dB) Lw	(A)] Lp	J▼ [kgm²]	m [kg]			
71 B 46	0.30 0.10	1390 905	0.95 0.45	56 46	0.82 0.76	2.1 1.1	2.9 2.0	1.2 1.1		56	48	0.0009	19			
80 A 46	0.44 0.13	1430 930	1.40 0.49	65 55	0.70 0.70	2.9 1.3	3.0 7.8	1.6 1.2		59	51	0.0013	26			
80 B 46	0.59 0.18	1430 950	1.60 0.67	74 56	0.72 0.69	4.0 1.8	4.0 3.6	1.7 1.9		59	51	0.0013	26			
90 S 46	0.90 0.30	1440 970	2.95 2.20	68 41	0.66 0.49	5.9 2.9	4.1 2.4	2.5 2.7		62	54	0.0020	33			
90 L 46	1.15 0.40	1395 920	3.20 1.65	70 51	0.77 0.69	8.3 4.2	3.9 2.5	2.2 2.0		62	54	0.0026	33			
100 LA 46 100 LB 46	1.80 0.60 2.20	1430 955 1425	4.10 1.90 4.70	79 70 80	0.80 0.65 0.85	12.0 6.0 14.7	5.2 4.0 5.0	2.0 1.7 1.9		63 63	55 55	0.0053 0.0053	46 46			
112 M 46	0.70 3.00	950	2.10	73	0.66	7.0	3.8	1.6		68	60	0.0103	65			
	0.90	1455 960	6.90 2.30	76 75	0.83 0.75	19.7 9.0	5.0 4.3	1.9								
132 S 46 132 MA 46	4.00 1.20 4.80	1460 980 1455	9.50 4.60 11.50	79 68 75	0.77 0.55 0.80	26.2 11.7 31.5	6.5 5.2 6.9	2.0 1.7 1.9		72 75	64 67	0.0250 0.0324	95 95			
132 MB 46	1.40 5.50	965 1460	5.10 13.00	68 76	0.58 0.80	13.9 36.0	5.4 5.7	1.8 1.9		75	67	0.0324	105			
132 L 46	1.70 6.60	960 1470	6.50 15.50	63 88	0.60 0.70	16.9 42.9	4.9 6.9	2.0 1.8		75	67	0.0405	105			
160 M 46	2.00 7.50	980 1470	8.00 15.35	76 86	0.49	20.0 48.9	5.4 7.1	1.8 2.1		77	69	0.0627	180			
160 L 46	2.50 11.00 3.30	985 1460 980	6.67 23.00 9.50	83 82 71	0.66 0.84 0.71	24.4 71.9 32.2	6.2 7.1 6.2	2.2 2.2 2.3		77	69	0.0801	195			
180 M 46	15.00 5.20	1450 960	31.50 21.00	81 85	0.85 0.57	98.8 51.7	6.9 6.0	1.8 1.6		79	70	0.1270	230			
180 L 46	18.50 6.25	1450 965	36.00 22.00	84 66	0.88 0.62	121.8 61.8	7.0 6.2	7.0 6.2		79	70	0.1488	245			
200 LA 46	21.00 7.50	1460 970	41.00 16.50	85 82	0.87 0.80	137.4 73.8	6.9 6.5	2.0 1.9		82	72	0.2436	295			
200 LB 46	26.00 8.80	1465 970	48.50 24.50	89 83	0.87 0.63	169.5 86.6	6.4 6.8	1.8 2.1		82	72	0.2436	315			
225 S 46	31.00 11.00	1470 975	58.00 23.00	88 82	0.88 0.84	201.4 107.7	6.5 6.0	2.2 2.1		84	73	0.3762	355			
225 M 46	36.00 12.00	1475 990	70.00 30.00	88 86	0.84 0.68	233.0 117.0	4.9 6.1	2.2 2.0		84	73	0.4451	380			
250 M 46	38.00 14.00	1485 985	72.66 28.89	89 85	0.85 0.83	244.5 136.0	5.6 5.4	1.9 1.9		86	75	0.4611	450			
280 S 46 280 M 46	65.00 25.00 80.00	1480 980	123.00 63.60 145.20	92 86 96	0.83 0.66 0.84	419.4 243.6 518.0	8.1 6.4 8.2	2.9 2.8 2.8		82 82	70 70	0.9500 1.1200	875 901			
	30.00	1485 995	76.30	91	0.63	291.6	8.2 6.2	2.9								
315 S 46 315 M 46	90.00 35.00 95.00	1485 985 1485	170.30 89.40 179.80	92 87 92	0.83 0.65 0.83	578.8 339.3 610.9	8.3 6.4 8.2	2.9 3.0 2.8		85 85	71 71	1.2700 1.3300	971 984			
315 LA 46	37.00 •••	990	92.10	88	0.66	356.9	6.4	3.0		0	0	0	0			
315 LB 46	0	0	0	0	0	0	0	0		0	0	0	0			
315 LC 46	0	0	0	0	0	0	0	0		0	0	0	0			

$$\begin{split} ^{\blacktriangleright} I'_n &= I_n \cdot \frac{400}{U'} & (I'_n = \text{corrente a U' Volt}); \\ & (I'_n = \text{current at U' Volt}); \\ & (I'_n = \text{intensité à U' Volt}); \\ & (I'_n = \text{Strom mit U' Volt }); \\ & (I'_n = \text{corriente de U' Voltios}); \end{split}$$

ITALIANO	Me	otori trifas	ie	Ve	locità		giri/min		per macchine	e centri	fughe	- 2 avvolg	imenti			
ENGLISH	Th	ree-phase	e motors	Sp	needs		rpm		for cent	rifugal ı	nachi	ines - 2 wi	ndings			
FRANÇAIS	М	oteurs trip	hasés	Vit	tesses		tours/min	p	our machine	s centri	fuge ·	- 2 enroule	ments			
DEUTSCH	4. Dr	ehstrom l	Motoren	Dr	ehzahlen	1000	U/min		für Zentrifu	galmas	chine	n - 2 Wick	lungen			
ESPAÑOL		otores trifa	ásicos	2 Ve	locidades	750	rev/min		para máquin	as cent	rífuga	as - 2 deva	ınados			
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	Corrente avviamento	Coppia avviamento		Rumoros	sità	Momento d'inerzia	Massa			
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Starting current	Starting torque		Noise le	vel	Moment of inertia	Mass			
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intensité démarrage	Couple démarrage		Niveau o	le	Moment d'inertie	Masse			
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgra	d Leistungs- faktor	Moment	Anlaufstrom	Anlauf- moment		Schalldr pegel	uck-	Trägheits- moment	Masse			
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corriente de arranque	Par de arranque		Nivel de	ruido	Momento de inercia	Peso			
	P _n [KW]	n [1/min]	In [®] [A]	η [%]	COS φ	Mn [Nm]	la/ln	Ma/Mn		[dB(4)] Lp	J▼ [kgm²]	m [kg]			
80 A 68	0.33	930	1.15	59	0.68	3.4	3.2	1.8		53	45	0.0027	26			
80 B 68	0.09 0.40 0.12	700 930 680	0.64 1.20 0.65	33 61 44	0.51 0.76 0.63	1.2 4.1 1.7	2.0 2.9 2.0	1.4 1.7 1.8		53	45	0.0027	26			
90 S 68	0.48	895	1.54	52	0.89	5.3	2.2	1.6		54	46	0.0034	33			
90 L 68	0.19 0.66 0.25	705 925 700	0.82 2.10 1.25	52 63 46	0.65 0.72 0.65	2.6 6.9 3.4	2.7 2.6 2.0	3.3 2.0 3.0		54	46	0.0049	33			
100 LA 68	0.88 0.37	960	2.90	66 47	0.66 0.63	8.8 4.9	4.1 3.6	1.8		63	55	0.0088	46			
100 L 68	1.10 0.44	715 930 720	1.80 3.25 2.20	68 55	0.75 0.55	4.9 11.6 5.9	3.2 2.9	1.7 2.2 2.9		63	55	0.0088	46			
112 M 68	1.50 0.75	970 725	4.60 3.30	74 60	0.64 0.54	14.8 9.9	4.2 3.4	2.0 2.6		65	57	0.0172	65			
132 S 68	2.20 0.88	975 730	6.00 3.50	79 67	0.67 0.54	21.6 11.6	4.5 3.8	2.2 1.7		68	60	0.0323	95			
132 MA 68	3.00 1.20	960 730	7.00 4.80	76 59	0.81 0.61	29.8 15.7	4.9 3.9	2.0		68	60	0.0395	95			
132 MB 68	3.70 1.50	965 715	8.90 5.00	79 64	0.76 0.68	36.6 20.0	5.1 3.9	2.2 2.1		68	60	0.0506	105			
160 M 68	5.50 2.50	980 730	12.50 6.80	87 83	0.73 0.64	53.6 32.7	5.6 4.3	2.2 2.3		72	64	0.0919	180			
160 L 68	7.50 4.00	970 728	17.40 11.60	83 78	0.75 0.64	73.9 52.8	5.8 4.0	1.8 2.3		72	64	0.1218	195			
180 M 68	9.00 4.50	965 725	20.00 11.00	83 80	0.78 0.74	89.1 59.3	5.8 4.3	2.3 2.2		76	67	0.2067	230			
180 L 68	10.00 5.20	960 720	23.50 13.00	79 80	0.78 0.72	99.5 69.0	5.6 4.1	2.1 2.0		76	67	0.2067	245			
200 LA 68	13.00 6.50	970 720	29.50 15.50	81 82	0.79 0.74	128.0 86.2	5.3 4.7	2.0 2.1		79	69	0.2986	295			
200 LB 68	16.00 8.10	970 725	36.00 21.00	80 72	0.80 0.77	157.5 106.7	5.2 4.6	1.9 2.0		79	69	0.3503	315			
225 S 68	20.00 10.00	980 730	41.00 24.50	88 76	0.80 0.78	194.9 130.8	5.0 4.9	2.3 2.2		81	70	0.6965	355			
225 M 68	23.00 11.00	988 737	46.40 25.20	91 89	0.79 0.72	223.9 144.8	5.0 4.2	1.9 1.7		81	70	0.6965	380			
250 M 68	26.00 13.00	980 730	53.00 31.50	89 75	0.80 0.80	253.3 170.1	4.8 4.5	1.8 1.7		81	70	0.7216	450			
280 S 68	40.00 16.00	985 740	81.40 38.20	91 84	0.78 0.72	387.8 206.5	7.3 5.3	3.1 2.7		77	65	1.1400	875			
280 M 68	48.00 20.00	990 740	99.50 53.40	90 86	0.68 0.63	464.5 258.0	7.5 5.2	3.0 2.7		77	65	1.3600	901			
315 S 68	58.00 24.00	990 742	119.60 56.90	91 87	0.77 0.70	559.5 308.9	7.9 5.4	3.4 2.9		79	65	1.6300	971			
315 M 68	65.00 27.00	995 740	130.90 62.30	92 87	0.78 0.72	623.9 348.4	7.8 5.3	3.3 2.9		79	65	1.8300	884			
315 LA 68	0) O	O2.50	Ö	0.72	O)	O		0	0	0	О			
315 LB 68	0	0	0	O	0	0	0	O		0	О	0	0			
315 LC 68	0	0	O	0	0	0	0	О		0	0	0	0			

$$\begin{split} I'_n &= I_n \cdot \frac{400}{U'} & \text{ (I'}_n = \text{corrente a U' Volt);} \\ & \text{ (I'}_n = \text{current at U' Volt);} \\ & \text{ (I'}_n = \text{intensité à U' Volt);} \\ & \text{ (I'}_n = \text{Strom mit U' Volt);} \\ & \text{ (I'}_n = \text{corriente de U' Voltios);} \end{split}$$

ITALIANO Motori monofase Velocità giri/min	
ENGLISH Single-phase motors Speed rpm	
ESPAÑOL 4.5 Motores monofásicos 1 Velocidad 1000 rev/min Tipo Potenza Velocità Corrente Rendimento Fattore Coppia Corrente Coppia Condensatore Rumorosità Momento Massa	
motore resa potenza avviamento avviamento d'inerzia Motor type Rated Speed Current Efficiency Power Torque Starting Starting Capacitor Noise level Moment Mass	
output factor current torque of inertia Moteur Puissance Vitesse Intensité Rendement Facteur de Couple Intensité Couple Condensateur Niveau de Moment Masse	
type mécanique puissance démarrage démarrage bruit d'inertie Motor Typ Leistung Drehzahl Strom Wirkungsgrad Leistungs- Moment Anlaufstrom Anlauf- Kondensator Schalldruck- Trägheits- Masse	
faktor moment pegel moment	
motor proporcionada potencia arranque arranque de inercia	
P _Π	
63 A 2 0.10 2750 1.30 35 0.95 0.3 3.3 0.6 6.3 60 52 0.0001 16 63 B 2 0.15 2750 1.30 53 0.95 0.5 3.8 0.6 8.0 60 52 0.0001 16	
71 A 2 0.20 2800 2.60 48 0.92 0.7 3.6 0.7 10.0 66 58 0.0004 19	
71 B 2 0.40 2730 2.90 63 0.95 1.4 2.7 0.7 12.5 66 58 0.0004 19 80 A 2 0.55 2720 5.40 53 0.82 1.9 2.5 0.6 16.0 70 62 0.0006 26	
80 B 2 0.75 2790 5.30 63 0.97 2.6 4.5 0.8 20.0 70 62 0.0008 26 90 S 2 1.10 2750 7.80 63 0.97 3.8 4.4 0.7 45.0 77 69 0.0012 33	
90 L 2 1.50 2800 8.90 74 0.98 5.1 4.9 0.7 60.0 77 69 0.0015 33	
100 LA 2 2.20 2800 15.50 65 0.95 7.5 5.0 0.6 60.0 80 72 0.0029 46 100 LB 2 3.00 2800 18.00 74 0.98 10.2 5.0 0.6 80.0 80 72 0.0036 46	
63 A 4 0.09 1360 1.10 39 0.90 0.6 3.2 0.6 6.3 52 44 0.0002 16 63 B 4 0.13 1350 1.30 55 0.90 1.1 3.0 0.6 8.0 52 44 0.0002 16	
71 A 4 0.15 1380 1.70 42 0.90 1.0 3.2 0.7 10.0 56 48 0.0006 19 71 B 4 0.25 1380 2.30 48 0.97 1.7 3.4 0.7 12.5 56 48 0.0009 19	
80 A 4 0.35 1410 3.30 49 0.96 2.4 3.8 0.7 20.0 59 51 0.0009 26	
80 B 4 0.45 1420 4.30 53 0.85 3.0 3.8 0.8 25.0 59 51 0.0013 26 80 L 4 0.55 1420 4.90 56 0.87 3.7 3.9 0.7 20.0 59 51 0.0014 26	
90 S 4 0.75 1420 5.90 56 0.97 5.2 2.1 1.0 30.0 62 54 0.0020 33 90 L 4 1.10 1430 7.20 73 0.91 7.3 4.0 0.6 35.0 62 54 0.0026 33	
100 LA 4 1.30 1370 8.10 72 0.98 9.0 3.2 0.5 35.0 63 55 0.0043 46	
100 LB 4	
71 A 6 0.10 900 1.50 36 0.80 1.1 2.6 0.5 8.0 50 42 0.0007 19	
71 B 6 0.15 850 1.40 50 0.93 1.7 2.8 0.5 10.0 50 42 0.0010 19 80 A 6 0.20 910 2.70 40 0.81 2.1 2.9 0.6 16.0 53 45 0.0022 26	
80 B 6 0.30 930 3.00 53 0.82 3.1 3.0 0.6 25.0 53 45 0.0027 26	
90 S 6 0.55 920 4.30 63 0.88 5.7 3.0 0.6 30.0 54 46 0.0034 33 90 L 6 0.75 910 6.10 60 0.88 7.9 3.1 0.7 35.0 54 46 0.0049 33	
100 LB 6 1.10 920 8.00 65 0.92 11.4 3.2 0.7 75.0 63 55 0.0088 46	

ITAL IAMO	Ma	stavi trifa	aa aan fu	ono	Volon	.i+à		airi/mir	a Comit	io tino	nor or	llovomonto	Freno					
ITALIANO ENCLICH	_	otori trifa:			Veloc			giri/mir		_		ollevamento						
ENGLISH	_			with brake	Spee			rpm		y type	_	applications				Brak		
FRANÇAIS		oteurs trip			Vites			_	nin Servic			pour levage				Frein		
DEUTSCH				mit Bremse	Dreh		1000	U/min		etrieb \$4	_	Hubmotoren				Brems		
ESPAÑOL		otores trif			Veloc		1000			gimen 40%		ra elevación		l o		Frenc		
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	avvia	amento	Coppia avviamento	Coppia massima	Rumorosità	Momento d'inerzia	Massa	Copp		Potenza	Frenate per ora	Inerzia totale
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	e Start curre		Starting torque	Maximum torque	Noise level	Moment of inertia	Mass	Torqu	ue	Power	Braking: n° per hour	Total inertia
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple		nsité arrage	Couple démarrage	Couple maximal	Niveau de bruit	Moment d'inertie	Masse	Coup	le	Puissance	Freinages par heure	Inertie totale
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	Leistungs- faktor	Momei	nt Anla	ufstrom	Anlauf- moment	Kippmoment	Schalldruck- pegel	Trägheits- moment	Masse	Mom	ent	Leistung	Bremsungen pro Stunde	Gesamt Trägheit
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corri arrar	iente de nque	Par de arranque	Par maximo	Nivel de ruido	Momento de inercia	Peso	Par		Potencia	Frenados por hora	Inercia total
	Pn	n	In	η	COS φ	Mı		la/In	Ma/Mn	M _m /M _n	[dB(A)]	J▼	m	[N		[VA/W]	[max n.]	[kgm ²]
71 A 6	[KW] 0.18	[1/min] 945	[A] 0.92	[%] 55.0	0.51	[Nn] 1.1		3.7	3.7	3.7	Lp 42	[kgm ²] 0.00112	[kg] 29	S1 3	S4 9	50	240	0.00112
71 B 6	0.26	918	1.00	60.0	0.63	2.	71	3.4	2.6	2.6	42	0.00142	29	3	9	50	240	0.00142
80 A 6 80 B 6	0.37 0.55	930 930	1.60 1.80	58.0 70.0	0.58 0.65	3.5 5.		3.1 2.8	2.9 2.0	3.2 2.1	45 45	0.00300 0.00350	36 36	6	17 17	60 60	240 240	0.00300 0.00350
90 S 6 90 L 6	0.75 1.10	950 935	2.39 3.35	73.0 73.0	0.62 0.65	7.5 11.5		4.0 3.4	3.0 2.0	3.3 2.2	46 46	0.00450 0.00600	52 52	12 12	35 35	140 140	240 240	0.00450 0.00600
100 LB 6	1.50	950	3.80	76.0	0.75	15.		4.2	2.0	2.3	55	0.01012	62	25	48	180	240	0.01012
112 M 6	2.20	960	6.11	80.0	0.65	21.8	84	5.2	2.3	2.1	57	0.01939	100	34	70	250	240	0.01939
132 SB 6 132 MB 6	3.00 4.00	975 970	9.34 9.84	82.0 86.0	0.56 0.69	29.4 39.5		6.4 6.0	3.3 2.0	3.5 2.5	60 60	0.04046 0.04766	134 134	50 50	90 90	400 400	240 240	0.03638 0.04358
132 ML 6	5.50	960	15.56	74.0	0.69	54.9		5.5	2.7	3.0	60	0.05876	134	50	90	400	240	0.05468
160 MB 6 160 L 6	7.50 11.00	950 965	15.70 25.60	85.0 89.0	0.81 0.70	75.: 109.:		4.8 5.0	2.1 2.5	2.1 2.9	64 64	0.09691 0.12681	217 217	60 60	130 130	480 480	240 240	0.09661 0.12681
180 L 6	15.00	984	33.41	93.0	0.70	145.		7.7	3.0	3.5	67	0.23830	435	90	400	140	150	0.23830
200 LA 6 200 LB 6	18.50 22.00	980 985	41.70 49.90	90.2 90.4	0.71 0.70	180.: 212.:		7.2 7.3	2.5 2.8	3.7 4.4	69 69	0.31060 0.03184	490 515	300 300	400 400	140 140	150 150	0.31060 0.31840
225 M 6	30.00	985	61.00	91.7	0.78	290.		5.8	2.0	2.5	70	0.77370	750	600	800	140	150	0.77370
250 M 6 250 ML 6	37.00 45.00	990 988	72.00 93.60	94.0 93.0	0.70 0.75	358.0 434.0		5.2 8.6	2.0 3.0	2.4 1.9	70 70	1.05950 1.23000	815 905	600	800	140 140	150 150	1.05950 1.24200
280 S 6 280 M 6	45.00 55.00	982 980	90.50 109.00	89.0 91.0	0.80 0.81	436.5 535.0		4.9 4.7	2.5 2.3	2.8 2.4	65 65	1.14000 1.36000	1153 1189	600 600	800 800	140 140	150 150	1.15200 1.37200
315 S 6	75.00	990	151.80	93.2	0.77	722.		6.1	2.2	2.4	65	1.63000		600		-	150	1.84200

Numero di avviamenti superiori su richiesta Higher number of start-ups by request Nombre de démarrages supérieurs sur demande Höhere Anzahl von Starts pro Stunde auf Anfrage Número de arranques superiores a petición

$$\begin{split} ^{\bullet}I'_n = I_n \cdot \frac{400}{U'} & \text{ (I'}_n = \text{corrente a U' Volt);} \\ & \text{ (I'}_n = \text{current at U' Volt);} \\ & \text{ (I'}_n = \text{intensité à U' Volt);} \\ & \text{ (I'}_n = \text{Strom mit U' Volt);} \\ & \text{ (I'}_n = \text{corriente de U' Voltios);} \end{split}$$

ITALIANO	Ma	tori trifas	oo oon fr	ono	Veloci	tà l		giri/mir	n Servizio tipo		nor er	ollevamento				Frenc		
ENGLISH				with brake	Speed	_		rpm	Duty type			applications				Brak		
FRANÇAIS	_	teurs trip			Vitess	_		tours/n				pour levage				Freir		
DEUTSCH		•		mit Bremse	Drehz	_	3000	U/min	Betrieb		_	Hubmotoren				Brems		
ESPAÑOL		tores trif			2 Veloci	_		rev/mir			_	a elevación				Frenc		
Tipo	Potenza	Velocità	Corrente	Rendimento	Fattore	Coppia	Corre		Coppia	TU	Rumorosità	Momento	Massa	Copp	oia	Potenza	Frenate per	Inerzia
motore Motor type	resa Rated	Speed	Current	Efficiency	potenza Power	Torque	avvia Starti	mento ina	avviamento Starting		Noise level	d'inerzia Moment	Mass	Torq	ue	Power	ora Braking:	totale Total
Moteur	output Puissance	Vitesse	Intensité	Rendement	factor Facteur de	Couple	curre	nt	torque Couple		Niveau de	of inertia Moment	Masse	Cour		Puissance	n° per hour Freinages	inertia Inertie
type	mécanique				puissance		déma	rrage	démarrage		bruit	d'inertie					par heure	totale
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	Leistungs- faktor	Moment		fstrom	Anlauf- moment		Schalldruck- pegel	Trägheits- moment	Masse	Mon	ieni	Leistung	Bremsungen pro Stunde	Gesamt Trägheit
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	arran		Par de arranque		Nivel de ruido	Momento de inercia	Peso	Par		Potencia	Frenados por hora	Inercia total
	Pn [KW]	n [1/min]	In ⁵ [A]	η [%]	COS φ	Mn [Nm]		a/In	Ma/Mn		[dB(A)] Lp	J ▼ [kgm²]	m [kg]	[N S1	m] S4	[VA/W]	[max n.]	[kgm ²]
71 B 28	0.36 0.06	2860 670	1.10	60.6 21.0	0.82 0.68	1.20 0.86		3.5 1.5	2.0		58	0.0009	29	6	9	50	240	0.00082
80 A 28	0.55	2935	1.32	77.0	0.78	1.79		6.4	2.4		62	0.0009	36	12	17	60	240	0.00140
80 B 28	0.12 0.66	688 2840	0.85 1.48	45.0 78.0	0.45 0.82	1.77 2.22		1.6 6.1	1.3 2.1		62	0.0013	36	12	17	60	240	0.00160
90 S 28	0.17 0.90	660 2845	1.02 2.45	47.0 58.0	0.51 0.91	2.46 3.02		1.5 4.8	1.2 2.9		69	0.0020	52	25	35	140	240	0.00230
90 L 28	0.22 1.10	680 2968	1.35 4.10	36.0 60.3	0.65 0.64	3.09 3.54		2.1 6.2	2.8 3.2		69	0.0020	52	25	35	140	240	0.00250
100 LA 28	0.30 1.30	722 2960	1.40 3.40	57.6 71.1	0.54 0.78	3.97 4.19		2.2 8.6	2.1 3.7									
100 LA 28	0.33 1.50	735 2930	2.58 4.00	48.0 70.0	0.39 0.78	4.29 4.89		2.9 6.1	3.6 2.5		72	0.0043	62	34	48	180	240	0.00422
	0.37 2.60	725 2950	3.00 5.50	47.0 86.0	0.38 0.81	4.87 8.42		2.4	3.7		72	0.0053	62	34	48	180	240	0.00662
112 M 28	0.70	720	2.70	69.0	0.55	9.28		8.3 3.1	2.6 2.5		72	0.0103	100	50	70	250	240	0.00959
132 S 28	4.00 1.00	2950 720	6.80 4.20	83.0 63.0	0.91 0.60	12.95 13.26		8.5 3.3	2.7 2.3		75	0.03316	134	60	90	400	236	0.01648
132 M 28	5.00 1.25	2960 720	10.77 4.73	77.0 72.0	0.87 0.53	16.13 16.58		8.1 3.1	2.8 1.6		75	0.04056	134	60	90	400	236	0.02188
132 L 28	6.00 1.50	2950 710	14.42 7.34	78.0 59.0	0.77 0.50	19.42 20.18		7.2 2.4	3.0 1.7		75	0.04866	134	60	90	400	236	0.02568

Numero di avviamenti superiori su richiesta Higher number of start-ups by request Nombre de démarrages supérieurs sur demande Höhere Anzahl von Starts pro Stunde auf Anfrage Número de arranques superiores a petición

 $\begin{aligned} & \text{$I'_n = I_n \cdot \frac{400}{U'}$} & \text{$(I'_n = \text{corrente a U' Volt)};} \\ & \text{e} \\ & \text{$(I'_n = \text{current at U' Volt)};} \\ & \text{$(I'_n = \text{intensit\'e a U' Volt)};} \\ & \text{$(I'_n = \text{Strom mit U' Volt $)$;}} \\ & \text{$(I'_n = \text{corriente de U' Voltios});} \end{aligned}$

ITALIANO	M	otori trifas	se con fr	eno	Veloc	eità		giri/mir	n Servi	izio tipo		per so	ollevamento							
ENGLISH	_			s with brake	Spee			rpm		uty type		l .	applications				Brake			
FRANÇAIS		oteurs trip			Vites			•	nin Servi		IC410	_	pour levage				Frein			
DEUTSCH		•		mit Bremse				U/min		Betrieb	S4		Hubmotoren				Brems			
ESPAÑOL	-	otores trif				cidades		rev/min		Régimen		_	a elevación				Frenc			
	Potenza	Velocità	Corrente	Rendimento	Fattore		Corren			icyiiicii	407	Rumorosità	Momento	Massa	Copp	nio.	Potenza	Frenate per	Inerzia	
Tipo motore	resa				potenza	Coppia	avvian	nento	Coppia avviamento				d'inerzia					ora	totale	
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Startin curren		Starting torque			Noise level	Moment of inertia	Mass	Torq	ue	Power	Braking: n° per hour	Total inertia	
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intensi démar		Couple démarrage			Niveau de bruit	Moment d'inertie	Masse	Coup	ole	Puissance	Freinages par heure	Inertie totale	
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	Leistungs- faktor	Moment	Anlauf		Anlauf- moment			Schalldruck- pegel	Trägheits- moment	Masse	Mon	nent	Leistung	Bremsungen pro Stunde	Gesamt Trägheit	
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corrier		Par de arranque			Nivel de ruido	Momento de inercia	Peso	Par		Potencia	Frenados por hora	Inercia total	
	Pn	n	In▶	η	COS φ	Mn	la	/I _n	Ma/Mn			[dB(A)]	J▼	m	-	lm]	[VA/W]	[max n.]	[kgm ²]	
90 S 41	[KW] 0.55	[1/min] 1450	[A] 1.50	[%] 69.6	0.76	[Nm] 3.62		1.0	1.6			Lp O	[kgm ²]	[kg] 52	S1 25	S4 35	140	240	0.00310	
90 L 41	0.33 0.18 0.75	432	1.10	34.7	0.70	3.98	3 2	2.0	1.6					52	25	35	140	240		
30 L 41	0.25	1455 440	2.25 1.35	69.0 45.0	0.70 0.60	4.92 5.43		1.5 2.0	2.0 1.8			О	0	32	20	30	140	240	0.00370	
100 LA 41	1.10 0.37	1473 478	4.80 3.65	56.3 31.3	0.59 0.47	7.13 7.39		1.8 1.6	3.4 2.5			О	0	62	34	48	180	240	0.00562	
100 LB 41	1.50 0.50	1455 455	4.83 3.00	64.0 40.9	0.70 0.59	9.85 10.49		l.6 l.8	2.3 1.8			О	О	62	34	48	180	240	0.00662	
112 M 41	1.80 0.60	1475 470	7.05 3.85	61.3 44.0	0.60 0.51	11.65 12.19	i 6	5.3 2.2	2.9 1.7			0	0	100	50	70	250	240	0.01249	
132 S 41	2.20	1484	7.25	77.0	0.57	14.16	5 6	6.5	3.7			О	О	134	60	90	400	240	0.02908	
132 M 41	0.73 3.50	470 1480	4.60 10.20	50.0 84.0	0.46 0.59	14.83 22.58	3 9	1.7 9.4	1.8 2.9			О	0	134	60	90	400	240	0.03648	
132 L 41	1.17 4.00	485 1484	10.56 10.60	41.0 84.0	0.39 0.65	23.04 25.74	6	i.3 i.8	2.4			О	0	134	60	90	400	240	0.04458	
160 M 41	1.33 5.50	479 1470	9.87 12.60	54.0 77.0	0.36 0.82	26.52 35.73		i.9 5.8	2.5 2.1			0	0	217	90	130	480	240	0.06771	
160 L 41	1.83 7.50	485 1480	10.91 16.98	55.0 85.0	0.44 0.75	36.03 48.40	3 2	2.3 5.7	2.1 2.5			0	0	217	90	130	480	240	0.08511	
	2.50 9.00	483 1485	14.34 20.98	68.0 86.0	0.37	49.43 57.9	3 2	2.0 B.1	2.1											
180 M 41	3.00 11.60	485 1480	17.62 24.80	63.0 92.5	0.72 0.39 0.73	59.1 74.8	2	2.0 8.3	2.1 3.5			70	0.2383	435	300		140	150	0.13560	
180 L 41	3.87	480	23.98	61.3	0.38	77.0) 1	1.9	2.5			70	0.2383	435	300	400	140	150	0.16130	
200 LA 41	13.00 4.33	1490 493	27.00 20.57	89.1 74.1	0.78 0.41	83.3 83.9) 3	1.4 3.6	2.5 2.4			72	0.3184	515	300	400	140	150	0.25760	
200 LB 41	16.00 5.33	1490 491	36.34 27.78	89.5 71.0	0.71 0.39	102.5 103.7		0.0 3.8	2.8 2.7			72	0.3184	515	300	400	140	150	0.25760	
225 S 41	18.00 6.00	1475 485	38.90 22.30	90.0 78.0	0.64 0.50	116.4 119.6		1.6 1.9	3.8 2.7			73	0.7737	750	600	800	140	150	0.38570	
225 M 41	20.00 6.67	1470 480	42.53 22.99	91.0 79.0	0.75 0.53	129.9 132.7) 10	0.6 1.7	3.4 2.7			73	0.7737	750	600	800	140	150	0.45990	
250 M 41	29.00	1490	51.01	92.2	0.89	185.9) 10	0.5	2.8			75	1.2300	905	600	800	140	100	0.77930	
250 ML 41	9.50 •	495 • O	33.77 •••	84.6 O	0.48 •••	183.3 O		4.8 O	2.3			О	0	0	0	0	0	0	0	
280 S 41	0	0	0	0	0	0	(Э	0			0	0	0	0	0	0	0	0	
280 M 41	0	0	0	0	0	0		о Э	0			0	0	0	0	0	0	0	0	
315 S 41	0	0	0	0	0	0)	0			0	0	0	0	0	0	0	0	
313 3 41			0	J	J	J	(,	J			J							J	

Numero di avviamenti superiori su richiesta Higher number of start-ups by request Nombre de démarrages supérieurs sur demande Höhere Anzahl von Starts pro Stunde auf Anfrage

 $I'_n = I_n \cdot \frac{400}{U'}$ ($I'_n = \text{corrente a U' Volt}$); e ($I'_n = \text{current at U' Volt}$); e ($I'_n = \text{intensité à U' Volt}$);

 $(I'_n = Strom mit U' Volt);$ (I'_n = corriente de U' Voltios);

ITALIANO	Mo	tori trifas	se con fr	eno	Veloc	cità		giri/mi	n Serviz	zio tipo		per so	ollevamento		Freno Brake						
ENGLISH				with brake	Spee	ds		rpm	Dut	ty type		or hoist a	applications				Brak	 9			
FRANÇAIS	_	teurs trip			Vites	ses		tours/n		e type	IC410		pour levage				Frein				
DEUTSCH				mit Bremse	Dreh	zahlen	1500	U/min		Betrieb	S4	_	Hubmotoren				Brems	 Ge			
ESPAÑOL		tores trif			2 Veloc	idades	375	rev/mir	n Ré	gimen		par	a elevación				Frenc)			
Tipo motore	Potenza resa	Velocità	Corrente	Rendimento	Fattore potenza	Coppia	Correr avvian		Coppia avviamento			Rumorosità	Momento d'inerzia	Massa	Сорг	oia	Potenza	Frenate per ora	Inerzia totale		
Motor type	Rated output	Speed	Current	Efficiency	Power factor	Torque	Startir		Starting torque			Noise level	Moment of inertia	Mass	Torq	iue	Power	Braking: n° per hour	Total inertia		
Moteur type	Puissance mécanique	Vitesse	Intensité	Rendement	Facteur de puissance	Couple	Intens démar	sité	Couple démarrage			Niveau de bruit	Moment d'inertie	Masse	Coup	ole	Puissance	Freinages par heure	Inertie totale		
Motor Typ	Leistung	Drehzahl	Strom	Wirkungsgrad	Leistungs- faktor	Momen			Anlauf- moment			Schalldruck- pegel	Trägheits- moment	Masse	Mon	nent	Leistung	Bremsungen pro Stunde	Gesamt Trägheit		
Tipo de motor	Potencia proporcionada	Velocidad	Corriente	Rendimiento	Factor de potencia	Par	Corrie		Par de arranque			Nivel de ruido	Momento de inercia	Peso	Par		Potencia	Frenados por hora	Inercia total		
	P _n [KW]	n [1/min]	In [▶] [A]	η [%]	COS φ	M _n [Nm		₃ /I _n	Ma/Mn			[dB(A)] Lp	J▼ [kgm²]	m [kg]		lm] S4	[VA/W]	[max n.]	[kgm ²]		
132 S 43	2.20	1475	5.79	78.3	0.70	14.	2	7.3	2.4			0	0	134	60	90	400	240	0.02908		
132 M 43	0.55 3.50	355 1470	4.54 10.04	39.7 68.0	0.44	14. 22.	7	1.8 5.8	2.0 2.6			0	0	134	60	90	400	240	0.03648		
132 L 43	0.88 4.00	345 1475	5.51 10.44	48.0 77.9	0.48 0.71	24. 25.	9	2.7 6.7	1.7 2.0			0	0	134	60	90	400	240	0.04458		
160 M 43	1.00 5.50	355 1485	6.93	43.4 78.9	0.48	26. 35.	4	1.9 9.7	2.1 3.1			0	0	217	90	130	480	240	0.06771		
160 L 43	1.38 7.50 1.90	364 1480 358	9.76 16.94 9.67	55.7 83.0 63.0	0.37 0.77 0.45	36. 48. 50.	4	2.3 7.2 2.2	1.8 2.3 1.6			0	0	217	90	130	480	240	0.08511		
180 L 43	9.50 2.40	1475 365	19.26 19.09	89.0 55.0	0.45 0.80 0.33	61. 62.	5	9.3 2.6	2.8 2.9			70	0.2911	435	300	400	140	150	0.16130		
200 LA 43	12.00	1490	26.21	89.3	0.74	76.	9	9.4	3.5			72	0.2576	495	300	400	140	150	0.25760		
200 LB 43	2.75 16.00 3.25	365 1490 365	18.85 34.40 21.47	56.9 89.5 57.5	0.37 0.75 0.38	71. 102. 85.	5 1	1.7 10.6 1.9	2.0 4.0 2.1			72	0.2576	495	300	400	140	150	0.25760		
225 M 43	18.50 4.65	1488 365	34.79 22.58	90.3 74.3	0.85 0.40	118. 121.	7	8.1 1.9	2.2			73	0.4599	750	600	800	140	150	0.45990		
250 M 43	37.00 9.50	1490 360	65.03 42.68	94.4 71.4	0.40 0.87 0.45	237. 252.	1	9.9	2.6 1.7			75	0.7793	835	600	800	140	100	0.77930		
280 S 43	3.30 O	0	-42.00 O	0	O.40) O		0	0			0	0	0	0	0	0	0	0		
280 M 43	0	0	0	0	0	0	(0	О			0	0	0	0	0	0	0	0		
315 S 43	0	0	0	0	0	0	(0	0			0	0	0	О	0	0	0	О		

Numero di avviamenti superiori su richiesta Higher number of start-ups by request Nombre de démarrages supérieurs sur demande Höhere Anzahl von Starts pro Stunde auf Anfrage

 $\int_{0}^{\infty} I'_{n} = I_{n} \cdot \frac{400}{U'} \quad \text{(I'}_{n} = \text{corrente a U' Volt);}$ $\text{(I'}_{n} = \text{current at U' Volt);}$ (l'n = intensité à U' Volt);

 $(I'_n = Strom mit U' Volt);$ (I'_n = corriente de U' Voltios);

ENCLICH

Motori alimentati da inverter

Motors energized by inverter

ANIONIO

Moteurs alimentés par variateur

DEUTSCH

Motoren mit Umrichterversorgung

SPAÑOL

Ventilazion Ventilation Ventilation Belüftung Ventilacion						IC	411						IC 4	1 11 /	IC 416*			IC -	416		IC 411
	400 V,			5 ÷ 50 e 1 ÷ 10 800 ÷ 30	00		0 ÷ 50 e 1 ÷ 5 00 ÷ 300	00		25 ÷ 50 e 1 ÷ 2 500 ÷ 30	00		60 ÷ 87 10 ÷ 17 000 ÷ 52	00	[Hz] 50 range 1 [1/min] 30		00		5 ÷ 50 1 ÷ 10 00 ÷ 300	00	[Hz] 5 ÷ 50 range 1 ÷ 10 [1/min] 300 ÷ 3000
Tipo motore	Alimenta da rete	zione	Coppia costan	te		Coppia costant	е		Coppia costant	e		Coppia costanti Flusso indeboli			Coppia costante collegamento Δ	- Flusso	costante	Coppia costant Ventilazione As			Coppia quadratica•
Motor type	Mains connecti	on	Constant torqu	Je		Constant torqu	e		Constant torqu	е		Constant torque Weakened flux	9 -		Constant torque connection	- Consta	int flux Δ	Constant torque Forced Ventilat			Quadratic torque•
Moteur type	Alimenta de secte		Couple consta	ant		Couple constar	nt		Couple constar	nt		Couple constan	t -		Couple constant constant raccord		1	Couple constar Ventilation Assi			Couple quadratique•
Motor Typ	Netzeins	peisung	Konstantes Gegenmoment	t		Konstantes Gegenmoment			Konstantes Gegenmoment			Konstantes Gegen Feldschwächbetri			Konstantes Gegenn konstanter Strom Z		ung	Konstantes Geg Fremdbelüftung	•	ent -	Quadratisches Gegenmoment•
Tipo de motor	Alimenta desde la		Par constante			Par constante			Par constante			Par constante - Flujo debilitado			Par constante - constante conex			Par constante - Ventilación asis			Par cuadrático•
Ex d - Ex de	P _n [kW]	I _n [A]	P [kW]	M [Nm]	 [A]	P [kW]	M [Nm]	 [A]	P [kW]	M [Nm]	 [A]	P [kW]	M [Nm]	I [A]	P [kW]	M [Nm]	I [A]	P [kW]	M [Nm]	I [A]	P [kW]
63 B 2	0.25	0.85	0.02-0.16	0.54	0.53	0.04-0.18	0.61	0.60	0.11-0.22	0.76	0.74	0.13-0.23	0.46	0.44	0.21-0.36	0.70	1.18				0.25
71 A 2 71 B 2	0.37 0.55	1.10 1.40	0.02-0.24 0.04-0.35	0.81 1.19	0.71 0.91	0.05-0.27 0.08-0.40	0.91 1.34	0.80 1.02	0.16-0.33 0.24-0.49	1.12 1.65	0.99 1.26	0.20-0.35 0.30-0.51	0.68 1.00	0.60 0.76	0.30-0.53 0.45-0.79	1.04 1.53	1.60 2.02				0.37 0.55
80 A 2 80 B 2	0.75 1.10	1.90 2.60	0.05-0.48 0.07-0.70	1.6 2.38	1.29 1.67	0.11-0.54 0.16-0.79	1.84 2.67	1.45 1.88	0.33-0.67 0.49-0.98	2.2 3.31	1.80 2.32	0.40-0.70 0.59-1.03	1.37 1.99	1.08 1.40	0.62-1.07 0.90-1.57	2.10 3.05	2.89 3.73				0.75 1.10
90 S 2 90 L 2	1.50 2.20	3.10 4.80	0.10-0.96 0.14-1.41	3.19 4.77	1.99 3.08	0.22-1.08 0.32-1.58	3.59 5.36	2.24 3.47	0.67-1.34 0.98-1.96	4.45 6.64	2.78 4.29	0.81-1.40 1.18-2.06	2.68 4.00	1.67 2.59	1.23-2.14 1.81-3.15	4.10 6.12	4.45 6.88				1.50 2.20
100 LA 2	3.00	7.30	0.19-1.92	6.41	4.67	0.43-2.16	7.21	5.26	1.34-2.67	8.93	6.51	1.61-2.80	5.38	3.92	2.47-4.29	8.23	10.44	0.27-2.70	9.02	6.57	3.00
													÷ 70 ★ 10 ÷ 14 000 ÷ 42	00	[Hz] 50 range 1 [1/min] 30	0 ÷ 14	00				
112 M 2	4.00	8.70	0.30-2.60	8.40	5.60	0.60-2.90	9.50	6.30	1.80-3.60	11.70	7.80	3.00-4.10	9.80	6.50	3.90-5.40	12.80	14.90	0.40-3.60	11.90	7.90	4.00
132 SA 2 132 SB 2 132 MB 2	5.50 7.50 9.20	12.00 15.00 18.00	0.40-3.50 0.50-4.80 0.60-5.90	11.60 15.80 19.40	7.40 9.60 11.50	0.80-4.00 1.10-5.40 1.30-6.60	13.10 17.70 21.80	8.30 10.80 13.00			10.30 13.40 16.10	4.10-5.70 5.60-7.80 6.80-9.50	18.20	8.60 11.10 13.40	5.30-7.50 7.30-10.20 8.90-12.50	17.60 23.90 29.40	19.50 25.30 30.40	0.50-5.00 0.70-6.8 0.80-8.30	16.40 22.20 27.30	10.40 13.50 16.20	5.50 7.50 9.20
160 MA 2 160 MB 2 160 L 2	11.00 15.00 18.50	20.60 26.80 32.80	0.70-7.00 1.00-9.60 1.20-11.80	23.00 31.10 38.40	13.10 16.90 20.90	1.60-7.90 2.20-10.80 2.70-13.30	25.80 35.00 43.20	14.80 19.00 23.50	4.90-9.80 6.70-13.40 8.20-16.50	32.00 43.30 53.50	18.30 23.60 29.00	8.10-11.40 11.10-15.50 13.70-19.20	36.00	15.20 19.60 24.10	10.70-14.90 14.60-20.40 17.90-25.10	34.80 47.20 58.20	34.60 44.60 55.00	1.00-9.90 1.40-13.50 1.70-16.70	32.3 3.80 54.00	18.50 23.80 29.30	11.00 15.00 18.50
													÷ 60 ★ 10 ÷ 12 000 ÷ 36	00	[Hz] 50 range 1 [1/min] 30	0 ÷ 12	00				
180 M 2	22.00	40.00	1.40-14.10	46.00	25.40	3.20-15.80	51.00	28.50	9.80-19.60	63.00	35.30	19.80-23.80	64.00	35.70	22.00-26.40	71.00	68.90	2.00-19.80	64.00	35.70	22.00
200 LA 2 200 LB 2	30.00 37.00	55.00 67.00	1.90-19.20 2.40-23.70			4.30-21.60 5.30-26.60			13.40-26.70 16.50-33.00		49.00 59.00	27.00-32.40 33.30-40.00			30.00-36.00 37.00-44.40			2.70-27.00 3.30-33.30			30.00 37.00
225 M 2	45.00	82.00	2.90-28.80	92.00	52.00	6.50-32.40	104.00	58.50	20.00-40.10	129.00	72.30	40.50-48.60	130.00	73.10	42.70-51.30	137.00	134.20	4.10-40.50	130.00	73.10	45.00
250 M 2	55.00	98.00	3.50-35.20	113.00	62.80	7.90-39.60	127.00	70.60	24.50-49.00	157.00	87.40	49.50-59.40	159.00	88.30	52.20-62.70	168.00	162.10	5.00-49.50	159.00	88.30	55.00
280 S 2 280 M 2		132.00 165.00	4.60-46.40 5.60-55.60			10.10-50.70 12.20-60.80			31.70-63.40 38.00-76.10			63.70-76.50 76.50-91.80			67.50-81.00 81.00-97.20			6.40-63.70 7.70-76.50			73.50 87.30
315 S 2 315 LA 2 315 LB 2 315 LC 2	110.00 132.00 160.00 200.00	222.00 269.00	6.80-68.00 8.20-81.60 9.90-98.90 12.40-123.60	262.00 317.00	140.70 166.00	14.90-74.40 17.90-89.20 21.60-108.20 27.00-135.20	287.00 346.00	153.90 181.50	46.50-91.00 55.80-111.60 67.60-135.30 84.50-169.10	359.00 433.00	192.40 227.00	93.50-112.20 112.20-134.60 136.00-163.20 170.00-204.00	361.00 435.00	193.40 228.20	99.00-118.80 118.80-142.50 144.00-172.80 180.00-216.00	382.00 461.00	356.20 420.30	9.40-93.50 11.20-112.20 13.60-136.00 17.00-170.00	361.00 435.00	193.40 228.20	105.60 124.10 147.20 180.00

ENGLISH

Motori alimentati da inverter

IGLISH M

Motors energized by inverter

Moteurs alimentés par variateur

DEUTSCH

Motoren mit Umrichterversorgung

PAÑOL 4.

Ventilazion Ventilation Ventilation Belüftung Ventilacion	<i>ท</i> า					IC	411		l				IC	411 .	/ IC 416			IC 4	416		IC 411
	400 V,			5 ÷ 50 e 1 ÷ 10 l 50 ÷ 15	00		0 ÷ 50 • 1 ÷ 5 00 ÷ 150	0	range	25 ÷ 50 e 1 ÷ 2 '50 ÷ 150	00		50 ÷ 87 10 ÷ 17 500 ÷ 260	00	[Hz] 51 range 1 [1/min] 15	0 ÷ 17)		5 ÷ 50 1 ÷ 10 50 ÷ 150	0	[Hz] 5 ÷ 50 range 1 ÷ 10 [1/min] 150 ÷ 1500
Tipo motore	Alimenta da rete	zione	Coppia costan	te		Coppia costant	е		Coppia costant	е		Coppia costante Flusso indebolit			Coppia costante collegamento Δ	- Flusso c	ostante	Coppia costante Ventilazione As			Coppia quadratica•
Motor type	Mains connecti	on	Constant torqu	ie		Constant torqu	9		Constant torqu	е		Constant torque Weakened flux) -		Constant torque connection	- Constan	t flux ∆	Constant torque Forced Ventilati			Quadratic torque•
Moteur type	Alimenta de secte		Couple consta	nt		Couple constar	t		Couple constar	ıt		Couple constan Flux affaibli	t-		Couple constant constant raccord			Couple constan Ventilation Assi			Couple quadratique•
Motor Typ	Netzeins	peisung	Konstantes Gegenmoment	t		Konstantes Gegenmoment			Konstantes Gegenmoment			Konstantes Gegen Feldschwächbetrie			Konstantes Gegenn konstanter Strom Z		g	Konstantes Geg Fremdbelüftung		nt -	Quadratisches Gegenmoment•
Tipo de motor	Alimenta desde la		Par constante			Par constante			Par constante			Par constante - Flujo debilitado			Par constante - constante conex			Par constante - Ventilación asis	tida		Par cuadrático•
Ex d - Ex de	P _n [kW]	I _n [A]	P [kW]	M [Nm]	 [A]	P [kW]	M [Nm]	 [A]	P [kW]	M [Nm]	 [A]	P [kW]	M [Nm]	I [A]	P [kW]	M [Nm]	 [A]	P [kW]	M [Nm]	 [A]	P [kW]
63 A 4 63 B 4	0.12 0.18	0.62 0.67	0.01-0.08 0.01-0.12	0.53 0.82	0.34 0.44	0.02-0.09 0.03-0.13	0.60 0.92	0.38 0.49	0.05-0.11 0.08-0.16	0.74 1.14	0.48 0.61	0.06-0.11 0.10-0.17	0.45 0.69	0.29 0.37	0.10-0.17 0.15-0.26	0.68 1.05	0.76 0.97				0.12 0.18
71 A 4 71 B 4	0.25 0.37	0.80 1.10	0.02-0.16 0.02-0.24	1.11 1.63	0.49 0.69	0.04-0.18 0.05-0.27	1.25 1.83	0.56 0.77	0.11-0.22 0.16-0.33	1.55 2.26	0.69 0.96	0.13-0.23 0.20-0.35	0.93 1.37	0.41 0.58	0.21-0.36 0.30-0.53	1.43 2.09	1.10 1.54				0.25 0.37
80 A 4 80 B 4	0.55 0.75	1.60 2.00	0.04-0.35 0.05-0.48	2.44 3.27	1.04 1.29	0.08-0.40 0.11-0.54	2.74 3.68	1.17 1.45	0.24-0.49 0.33-0.67	3.39 4.56	1.44 1.79	0.30-0.51 0.40-0.70	2.04 2.75	0.87 1.08	0.45-0.79 0.62-1.07	3.13 4.21	2.32 2.87				0.55 0.75
90 S 4 90 L 4	1.10 1.50	2.80 3.60	0.07-0.70 0.10-0.96	4.80 6.46	1.75 2.31	0.16-0.79 0.22-1.08	5.40 7.26	1.97 2.60	0.49-0.98 0.67-1.34	6.69 8.99	2.43 3.21	0.59-1.03 0.81-1.40	4.03 5.42	1.47 1.94	0.90-1.57 1.23-2.14	6.17 8.29	3.91 5.15				1.10 1.50
100 LA 4 100 LB 4	2.20 3.00	5.25 6.83	0.14-1.41 0.19-1.92	9.42 12.77	3.34 4.34	0.32-1.58 0.43-2.16	10.60 14.36	3.76 4.88	0.98-1.96 1.34-2.67	13.12 17.78	4.65 6.04	1.18-2.06 1.61-2.80	7.91 10.71	2.80 3.64	1.81-3.15 2.47-4.29	12.10 16.40	7.46 9.68	0.20-1.98 0.27-2.70	13.25 17.96	4.70 6.10	2.20 3.00
112 M 4	4.00	8.20	0.30-2.60	17.00	5.10	0.60-2.90	19.10	5.80	1.80-3.60	23.60	7.20	2.20-3.70	14.30	4.30	3.30-5.70	21.80	11.50	0.40-3.60	23.90	7.20	4.00
132 SB 4 132 MB 4 132 ML 4	5.50 7.50 8.80	11.60 16.50 18.50	0.40-3.50 0.50-4.80 0.60-5.60	23.10 31.60 37.00	7.40 10.50 11.80	0.80-4.00 1.10-5.40 1.30-6.30	26.00 35.60 41.60	8.30 11.80 13.30	2.50-4.90 3.30-6.70 3.90-7.80	32.20 44.00 51.50	10.30 14.60 16.50	3.00-5.10 4.00-7.00 4.70-8.20	19.40 26.50 31.00	6.20 8.80 9.90	4.50-7.90 6.20-10.70 7.20-12.60	40.60	16.50 23.30 26.40	0.50-5.00 0.70-6.80 0.80-7.90	32.50 44.50 52.00	10.40 14.70 16.60	5.50 7.50 8.80
160 MB 4 160 L 4	11.00 15.00	23.00 30.00	0.70-7.00 1.00-9.60	45.70 62.40	14.60 19.10	1.60-7.90 2.20-10.80	51.50 70.20	16.50 21.50	4.90-9.80 6.70-13.40	63.70 86.80	20.40 26.70	5.90-10.30 8.10-14.00	38.40 52.30	12.30 16.10	9.00-15.70 12.30-21.50		32.70 42.80	1.00-9.90 1.40-13.50		20.60 26.90	11.00 15.00
180 M 4 180 L 4	18.50 22.00	39.00 44.00	1.20-11.80 1.40-14.10	77.00 92.00	25.00 28.30	2.70-13.30 3.20-15.80	87.00 103.00	28.20 31.90	8.20-16.50 9.80-19.60		34.90 39.40	9.90-17.30 11.80-20.60	65.00 77.00	21.00 23.80	15.20-26.50 18.10-31.50		55.90 63.30	1.70-16.70 2.00-19.80		35.20 39.80	18.50 22.00
200 LB 4	30.00	54.00	1.90-19.20	124.00	34.30	4.30-21.60	140.00	38.60	13.40-26.70	173.00	47.80	16.10-28.00	104.00	28.80	24.70-42.90	160.00	76.60	2.70-27.00	175.00	48.30	30.00
225 S 4 225 M 4	37.00 45.00	70.00 82.00	2.40-23.70 2.90-28.80			5.30-26.60 6.50-32.40		50.20 59.30	16.50-33.00 20.00-40.10		62.20 73.40	19.90-34.60 24.20-42.00		37.50 44.20	28.90-50.30 35.10-61.10		94.70 111.90	3.30-33.30 4.10-40.50		62.80 74.10	37.00 45.00
250 M 4	55.00	96.00	3.50-35.20	226.00	61.40	7.90-39.60	255.00	69.10	24.50-49.00	315.00	85.50	29.50-51.40	190.00	51.50	42.90-74.70	276.00	130.30	5.00-49.50	318.00	86.40	55.00
280 S 4 280 M 4	1	136.00 163.00	4.80-48.00 5.80-57.60			10.50-52.50 12.60-63.00			32.20-64.50 38.70-77.40			33.70-58.70 40.50-70.50			58.60-101.90 70.30-122.30			6.60-66.00 7.90-79.20			75.00 90.00
315 S 4 315 LA 4 315 LB 4 315 LC 4	110.00 132.00 160.00 200.00	239.00 282.00	7.00-70.40 8.50-84.50 10.20-102.40 12.80-128.00	543.00 657.00	154.20 179.90	15.40-77.00 18.50-92.40 22.40-112.00 28.00-140.00	594.00 719.00	168.70 196.80	47.30-94.60 56.80-113.50 68.80-137.60 86.00-172.00	730.00 883.00	207.20 241.80	49.50-86.10 59.40-103.30 72.00-125.30 90.00-156.60	382.00 462.00	108.40 126.50	85.90-149.40 103.10-179.30 124.90-217.40 156.20-271.70	663.00 3 802.00 3	327.30 381.80	9.70-96.80 11.60-116.10 14.10-140.80 17.60-176.00	747.00 904.00	212.10 247.40	110.00 132.00 160.00 200.00

FNGLISH

Motori alimentati da inverter

Motors energized by inverter

FRANÇAIS

Moteurs alimentés par variateur

TSCH Z

Motoren mit Umrichterversorgung

SPAÑOL 4,

Ventilazion Ventilation Ventilation Belüftung Ventilacion						IC	411						IC 4	411 .	/ IC 416			IC -	416		IC 411
	400 V,		range	5 ÷ 50 • 1 ÷ 10 • 100 ÷ 100	00		0 ÷ 50 e 1 ÷ 5 00 ÷ 100	0		25 ÷ 50 e 1 ÷ 2 600 ÷ 100	00		0 ÷ 87 10 ÷ 17 100 ÷ 17	50		0 ÷ 87 10 ÷ 17 00 ÷ 175	0		5 ÷ 50 1 ÷ 10 00 ÷ 100	00	[Hz] 5 ÷ 50 range 1 ÷ 10 [1/min] 100 ÷ 1000
Tipo motore	Alimenta: da rete	zione	Coppia costan	te		Coppia costant	е		Coppia costant	e		Coppia costante Flusso indebolit			Coppia costante collegamento Δ	- Flusso	costante	Coppia costant Ventilazione As			Coppia quadratica•
Motor type	Mains connection	on	Constant torqu	ie		Constant torqu	е		Constant torqu	е		Constant torque Weakened flux) -		Constant torque connection	- Constai	nt flux Δ	Constant torque Forced Ventilat			Quadratic torque•
Moteur type	Alimentat		Couple consta	ant		Couple constar	nt		Couple constar	nt		Couple constan	t-		Couple constant			Couple constar Ventilation Assi	ıt -		Couple quadratique•
Motor Typ	Netzeinsp		Konstantes Gegenmoment	 t		Konstantes Gegenmoment			Konstantes Gegenmoment			Konstantes Gegen Feldschwächbetrie			Konstantes Gegenr konstanter Strom /	noment -	nn	Konstantes Geç Fremdbelüftun	genmome	nt -	Quadratisches Gegenmoment•
Tipo de motor	Alimentad		Par constante			Par constante			Par constante			Par constante - Flujo debilitado			Par constante - constante conex	Flujo	9	Par constante - Ventilación asis			Par cuadrático•
Ex d - Ex de	P _n [kW]	I [A]	P [kW]	M [Nm]	 [A]	P [kW]	M [Nm]	 [A]	P [kW]	M [Nm]	 [A]	P [kW]	M [Nm]	 A]	P [kW]	M [Nm]	 [A]	P [kW]	M [Nm]	 A]	P [kW]
63 B 6	0.09	0.65	0.01-0.06	0.65	0.42	0.01-0.06	0.73	0.47	0.04-0.08	0.90	0.59	0.05-0.08	0.54	0.35	0.07-0.13	0.83	(A) 0.94	[KW]		[A]	0.09
71 A 6	0.18	0.92	0.01-0.12	1.18	0.70	0.03-0.13	1.33	0.79	0.08-0.16	1.65	0.97	0.10-0.17	0.99	0.59	0.15-0.26	1.52	1.56				0.18
71 B 6 80 A 6	0.26	1.00	0.02-0.17	1.73	1.02	0.04-0.19	1.95 2.74	0.71	0.12-0.23 0.16-0.33	2.41 3.39	0.88	0.14-0.24 0.20-0.35	1.45 2.04	0.53	0.21-0.37 0.30-0.53	2.22 3.12	1.42 2.27				0.26 0.37
80 B 6	0.55	1.80	0.04-0.35	3.61	1.12	0.08-0.40	4.07	1.26	0.24-0.49	5.03	1.55	0.30-0.51	3.03	0.94	0.45-0.79	4.64	2.49				0.55
90 S 6 90 L 6	0.75 1.10	2.20 3.20	0.05-0.48 0.07-0.70	5.04 7.19	1.39 2.00	0.11-0.54 0.16-0.79	5.67 8.09	1.57 2.25	0.33-0.67 0.49-0.98	7.01 10.01	1.94 2.79	0.40-0.70 0.59-1.03	4.23 6.03	1.17 1.68	0.62-1.07 0.90-1.57	6.47 9.24	3.11 4.47				0.75 1.10
100 LB 6	1.50	3.80	0.10-0.96	9.65	2.43	0.22-1.07	10.86	2.73	0.67-1.34	13.44	3.38	0.81-1.40	8.10	2.04	1.23-2.14	12.39	5.43	0.13-1.35	13.57	3.42	1.50
112 M 6	2.20	6.20	0.10-1.40	14.00	3.90	0.30-1.60	15.80	4.40	1.00-2.00	19.50	5.40	1.20-2.10	11.80	3.30	1.80-3.20	18.00	8.70	0.20-2.00	19.70	5.50	2.20
132 S 6 132 M 6 132 ML 6	3.00 4.00 5.50	8.50 9.50 12.00	0.20-1.90 0.30-2.60 0.40-3.50	19.30 25.20 35.00	5.40 6.10 7.70	0.40-2.20 0.60-2.90 0.80-4.00	21.70 28.40 39.40	6.10 6.80 8.60	1.30-2.70 1.80-3.60 2.50-4.90	26.90 35.10 48.80	7.60 8.50 10.70	1.60-2.80 2.20-3.70 3.00-5.10	16.20 21.20 29.40	4.60 5.10 6.40	2.50-4.30 3.30-5.70 4.50-7.90	24.80 32.40 45.00	12.10 13.60 17.10	0.30-2.70 0.40-3.60 0.50-5.00	27.20 35.40 49.20	7.60 8.60 10.80	3.00 4.00 5.50
160 MB 6 160 L 6	7.50 11.00	16.00 23.00	0.50-4.80 0.70-7.00	48.30 70.80	10.20 14.80	1.10-5.40 1.60-7.90	54.30 79.60	11.50 16.60	3.30-6.70 4.90-9.80	67.20 98.50	14.20 20.50	4.00-7.00 5.90-10.30	40.50 59.40	8.50 12.40	6.20-10.70 9.00-15.70	62.00 91.00	22.70 33.00	0.70-6.80 1.00-9.90	67.90 99.50	14.30 20.80	7.50 11.00
180 L 6	15.00	29.00	1.00-9.60	96.00	18.30	2.20-10.80	107.00	20.60	6.70-13.40	133.00	25.50	8.10-14.00	80.00	15.40	12.30-21.50	123.00	40.90	1.40-13.50	134.00	25.70	15.00
200 LA 6 200 LB 6	18.50 22.00	38.00 44.00	1.20-11.80 1.40-14.10		24.40 28.30	2.70-13.30 3.20-15.80			8.20-16.50 9.80-19.60			9.90-17.30 11.80-20.60	97.00 115.00	20.50 23.80	15.20-26.50 18.10-31.50	149.00 176.00	54.50 63.30	1.70-16.70 2.00-18.80	163.00 193.00	34.30 39.80	18.50 22.00
225 M 6	30.00	61.00	1.90-19.20	186.00	38.60	4.30-21.60	209.00	43.40	13.40-26.70	259.00	53.80	16.10-28.00	156.00	32.40	23.40-40.80	227.00	81.90	2.70-27.00	262.00	54.30	30.00
250 M 6	37.00	72.00	2.40-23.70	228.00	46.00	5.30-26.60	257.00	51.80	16.50-33.00	318.00	64.10	19.90-34.60	192.00	38.60	28.90-50.30	279.00	97.70	3.30-33.30	321.00	64.70	37.00
280 S 6 280 M 6	45.00 55.00	90.50 109.00	2.90-28.80 3.50-35.20			6.30-31.50 7.70-38.50			19.40-38.70 23.70-47.30			20.30-35.20 24.70-43.10			35.10-61.10 43.00-74.70			4.00-39.60 4.80-48.40			45.00 55.00
315 S 6 315 LA 6 315 LB 6 315 LC 6	75.00 90.00 110.00 132.00	167.60 205.00	4.80-48.00 5.80-57.60 7.00-70.40 8.50-84.50	558.00 676.00	111.90 130.20	10.50-52.50 12.60-63.00 15.40-77.00 18.50-92.40	611.00 740.00	122.40 142.40	32.20-64.50 38.70-77.40 47.30-94.60 56.80-113.50	750.00 909.00	150.40 175.00	33.70-58.70 40.50-70.50 49.50-86.10 59.40-103.30	393,00 476.00	78.70 91.60	58.60-101.90 70.30-122.30 85.90-149.40 103.10-179.30	681.00 825.00	237.50 276.30	6.60-66.00 7.90-79.20 9.70-96.80 11.60-116.10	768.00 930.00	153.90 179.00	75.00 90.00 110.00 132.00

Motori alimentati da inverter

Motors energized by inverter

FRANÇAIS

Moteurs alimentés par variateur

4.

Motoren mit Umrichterversorgung

4.7

Ventilazion Ventilation Ventilation Belüftung Ventilacion	е					IC	411						IC 4	411 .	/ IC 416			IC 4	416		IC 411
	400 V,		range	5 ÷ 50 e 1 ÷ 10 75 ÷ 750	0	range	0 ÷ 50 e 1 ÷ 5 150 ÷ 750)	range	25 ÷ 50 e 1 ÷ 2 375 ÷ 75	0		60 ÷ 87 10 ÷ 17 50 ÷ 130	00		0 ÷ 87 10 ÷ 17 50 ÷ 130	0	range	5 ÷ 50 1 ÷ 10 75 ÷ 750)	[Hz] 5 ÷ 50 range 1 ÷ 10 [1/min] 75 ÷ 750
Tipo motore	Alimenta: da rete	zione	Coppia costan	te		Coppia costant	е		Coppia costant	e		Coppia costante Flusso indebolit			Coppia costante collegamento Δ		costante	Coppia costant Ventilazione As			Coppia quadratica•
Motor type	Mains connection	on	Constant torqu	ie		Constant torqu	e		Constant torqu	е		Constant torque Weakened flux) -		Constant torque connection	- Constai	nt flux Δ	Constant torque Forced Ventilati			Quadratic torque•
Moteur type	Alimentat	tion	Couple consta	nt		Couple constar	nt		Couple constar	nt		Couple constan Flux affaibli	t -		Couple constant			Couple constan	ıt -		Couple quadratique•
Motor Typ	Netzeinsp		Konstantes Gegenmoment	•		Konstantes Gegenmoment			Konstantes Gegenmoment			Konstantes Gegen Feldschwächbetrie			Konstantes Gegenr konstanter Strom /	noment -	nn	Konstantes Geç Fremdbelüftung	genmome	nt -	Quadratisches Gegenmoment•
Tipo de motor	Alimentad		Par constante			Par constante			Par constante			Par constante - Flujo debilitado			Par constante - constante conex	Flujo	9	Par constante - Ventilación asis			Par cuadrático•
Ex d - Ex de	P _n [kW]	I [A]	P [kW]	M [Nm]	П [A]	P [kW]	M [Nm]	 A]	P [kW]	M [Nm]	 [A]	P [kW]	M [Nm]	I [A]	P [kW]	M [Nm]	 A]	P [kW]	M [Nm]	I [A]	P [kW]
63 B 8	0.05	0.44	0.003-0.03	0.52	0.29	0.01-0.04	0.58	0.32	0.02-0.04	0.72	0.40	0.03-0.05	0.43	0.24	0.04-0.07	0.67	0.64				0.05
71 B 8	0.15	0.57	0.01-0.10	1.53	0.34	0.02-0.11	1.72	0.38	0.07-0.13	2.13	0.48	0.08-0.14	1.28	0.29	0.12-0.21	1.96	0.76				0.15
80 A 8 80 B 8	0.18 0.25	0.97 1.00	0.01-0.12 0.02-0.16	1.56 2.21	0.58 0.63	0.03-0.13 0.04-0.18	1.76 2.49	0.65 0.71	0.08-0.16 0.11-0.22	2.17 3.08	0.81 0.88	0.10-017 0.13-0.23	1.31 1.86	0.49 0.53	0.15-0.26 0.21-0.36	2.00 2.84	1.30 1.41				0.18 0.25
90 S 8 90 L 8	0.37 0.55	1.30 1.90	0.02-0.24 0.04-0.35	3.33 4.94	0.83 1.22	0.05-0.27 0.08.0.40	3.74 5.56	0.93 1.37	0.16-0.33 0.24-0.49	4.63 6.88	1.15 1.70	0.20-0.35 0.30-0.51	2.79 4.15	0.70 1.02	0.30-0.53 0.45-0.79	4.27 6.35	1.85 2.73				0.37 0.55
100 LA 8	0.75	2.90	0.05-0.48	6.37	1.85	0.11-0.54	7.16	2.08	0.33-0.67	8.86	2.57	0.40-0.70	5.34	1.55	0.62-1.07	8.18	4.12	0.07-0.67	8.95	2.60	0.75
100 LB 8	1.10	3.10 4.40	0.07-0.70 0.10-1.00	9.96	1.99	0.16-0.79	11.21	3.20	0.49-0.98	13.87 17.70	2.77 3.90	0.59-1.03 0.80-1.40	8.36 10.70	1.67 2.40	0.90-1.57 1.20-2.10	12.79 16.40	4.45 6.30	0.10-0.99	14.01 17.90	2.80 3.90	1.10
132 SB 8 132 ML 8	2.20	6.50 8.50	0.10-1.40 0.20-1.90	18.70 25.50	4.10 5.40	0.30-1.60 0.40-2.20	21.00 28.70	4.60 6.00	1.00-2.00 1.30-2.70	26.00 35.50	5.70 7.50	1.20-2.10 1.60-2.80	15.70 21.40	3.40 4.50	1.80-3.20 2.50-4.30	24.00 32.70	9.20 12.00	0.20-2.00 0.30-2.70	26.30 35.80	5.80 7.50	2.20 3.00
160 MA 8 160 MB 8 160 L 8	4.00 5.50 7.50	9.70 14.00 18.00	0.30-2.60 0.40-3.50 0.50-4.80	34.10 46.40 63.70	6.20 8.70 11.20	0.60-2.90 0.80-4.00 1.10-5.40	38.30 52.20 71.60	7.00 9.80 12.70	1.80-3.60 2.50-4.90 3.30-6.70	47.40 64.60 88.60	8.60 12.10 15.70	2.20-3.70 3.00-5.10 4.00-7.00	28.60 38.90 53.40	5.20 7.30 9.40	3.30-5.70 4.50-7.90 6.20-10.70	43.70 59.60 81.80	3.90 19.40 25.10	0.40-3.60 0.50-5.00 0.70-6.80	47.90 65.20 89.50	8.70 12.20 15.80	4.00 5.50 7.50
180 L 8	11.00	23.00	0.70-7.00	93.00	14.80	1.60-7.90	105.00	16.60	4.90-9.80	130.00	20.60	5.90-10.30	78.00	12.40	9.00-15.70	120.00	33.00	1.00-9.90	131.00	20.80	11.00
200 LB 8	15.00	35.00	0.70-7.00	125.00	22.20	2.20-10.80	140.00	25.00	6.70-13.40	174.00	31.00	8.10-14.00	105.00	18.70	12.30-21.50	160.00	49.7	1.40-13.50	175.00	31.30	15.00
225 S 8 225 M 8	18.50 22.00	42.25 46.00	1.20-11.80 1.40-14.10		24.60 29.20	2.70-13.30 3.20-15.80		27.70 32.90	8.20-16.50 9.80-19.60		34.20 40.70	9.90-17.30 11.80-20.60		20.60 24.50	14.40-25.10 17.20-29.90	189.00 225.00	52.20 62.00	1.70-16.70 2.00-19.80	218.00 259.00	34.60 41.10	18.50 22.00
250 M 8	30.00	61.00	1.90-19.20	248.00	38.80	4.30-21.60	279.00	43.60	13.40-26.70	345.00	54.00	16.10-28.00	208.00	32.50	23.40-40.80	302.00	82.30	2.70-27.00	348.00	54.50	30.00
280 S 8 280 M 8	37.00 45.00	71.00 83.00	2.40-23.70 2.90-28.80		44.20 53.30	5.20-25.90 6.30-31.50		48.30 58.30	15.90-31.80 19.40-38.70			16.70-29.00 20.30-35.20		31.00 37.50	28.90-50.30 35.10-61.10		93.70 113.00	3.30-32.60 4.00-39.60		60.70 73.20	37.00 45.00
315 S 8 315 LA 8 315 LB 8 315 LC 8	55.00 75.00 90.00 110.00	136.60 164.50	3.50-35.20 4.80-48.00 5.80-57.60 7.00-70.40	624.00 739.00	90.80 104.20	7.70-38.50 10.50-52.50 12.60-63.00 15.40-77.00	682.00 809.00	99.40 113.90	23.70-47.30 32.20-64.50 38.70-77.40 47.30-94.60	838.00 994.00	122.10 140.00	24.70-43.10 33.70-58.70 40.50-70.50 49.50-86.10	439.00 520.00	50.50 63.90 73.20 90.50	42.90-74.70 58.60-101.90 70.30-122.30 85.90-149.40	761.00 902.00	192.70 221.00	4.80-48.40 6.60-66.00 7.90-79.20 9.70-96.80	858.00 1017.00	124.90 143.20	55.00 75.00 90.00 110.00

ITALIANO **ENGLISH** FRANÇAIS

DEUTSCH

ESPAÑOL

Motori alimentati da inverter - Curve di caricabilità

Coppia variabile flusso indebolito

Motors energized by inverter - Load capacity curves Moteurs alimentés par variateur - Courbes de chargeabilité Variable torque - Weakened flux Couple variable flux affaibli

Motoren mit Umrichterversorgung - Belastungskurven

Variables Drehmoment mit Feldschwächbetrieb

Motores alimentados con inverter - Curvas de capacidad de carga

Par variable flujo debilitado

2 poli - pole - pôles - polig - polos

4 - 6 - 8 poli - pole - pôles - polig - polos

(Hz) Mn (%) IC 411 Coppia Frequenza Autoventilati Torque Frequency Self-ventilated Autoventilés Couple Fréquence Gegenmoment Frequenz Eigenbelüftet Par Frequencia Autoventilados

IC 416 Ventilazione assistita (disponibile da altezza d'asse 100) Forced ventilation (available from frame size 100) Ventilation assistée (disponible à partir de hauteur d'axe 100) Fremdbelüftung (verfügbar ab Baugröße 100) Ventilacion asistida (disponible a partir de altura del eje 100)

Coppia variabile flusso indebolito

Variable torque - Weakened flux

ENGLISH
FRANÇAIS

ITALIANO

Moteurs alimentés par variateur - Courbes de chargeabilité

Motoren mit Umrichterversorgung - Belastungskurven

Couple variable flux affaibli

Variables Drehmoment mit Feldschwächbetrieb

DEUTSCH

Motores alimentados con inverter - Curvas de capacidad de carga

Par variable flujo debilitado

ESPAÑOL

2 poli - pole - pôles - polig - polos

Note:

4.7.1

Nel funzionamento a coppia costante il valore di coppia utilizzabile è il valore minore del range di funzionamento prescelto In the constant torque operating mode, the usable torque value is the lowest value of the chosen range of operation

Lors du fonctionnement à couple constant la valeur de couple utilisable est la valeur inférieure à la plage de fonctionnement sélectionnée Im Betrieb mit konstantem Drehmoment ist der verwendbare Momentwert der Mindestwert des gewählten Betriebsbereichs

En el funcionamiento con par constante el valor de par que se puede utilizar es el valor menor del intervalo de funcionamiento elegido

Il valore di coppia di riferimento (Mn) è quello indicato nelle tabelle della sezione 4.1 The reference torque value (Mn) is the value indicated in the tables in section 4.1 La valeur de couple de référence (Mn) est celle indiquée dans les tableaux de la section 4.1 Der Richtwert des Drehmoments (Mn) ist der in den Tabellen in Abschnitt 4.1 angegebene El valor de par de referencia (Mn) es el que recogen las tablas de la sección 4.1

ITALIANO FRANÇAIS DEUTSCH

ESPAÑOL

Motori alimentati da inverter - Curve di caricabilità

Coppia variabile flusso indebolito

Motors energized by inverter - Load capacity curves

Variable torque - Weakened flux

Moteurs alimentés par variateur - Courbes de chargeabilité Motoren mit Umrichterversorgung - Belastungskurven

Couple variable flux affaibli Variables Drehmoment mit Feldschwächbetrieb

Motores alimentados con inverter - Curvas de capacidad de carga

Par variable flujo debilitado

Couple variable flux affaibli

Par variable flujo debilitado

4 - 6 - 8 poli - pole - pôles - polig - polos

Motori alimentati da inverter - Curve di caricabilità Coppia variabile flusso indebolito Motors energized by inverter - Load capacity curves Variable torque - Weakened flux Moteurs alimentés par variateur - Courbes de chargeabilité 4. Motoren mit Umrichterversorgung - Belastungskurven Variables Drehmoment mit Feldschwächbetrieb Motores alimentados con inverter - Curvas de capacidad de carga

4 - 6 - 8 poli - pole - pôles - polig - polos

Note: vedi pagina 192, 193; see page 192, 193; voir page 192, 193; siehe Seite 192, 193; vèase página 192, 193;

ITALIANO
ENGLISH
FRANÇAIS
DEUTSCH
ESPAÑOL

5. Dimensioni d'ingombro e forme costruttive

- 5.1 Forme costruttive
- 5.2 Dimensioni d'ingombro motori standard e per miniera
- 5.3 Dimensioni d'ingombro motori con freno

5. Overall dimensions and mounting arrangements

- 5.1 Mounting arrangements
- 5.2 Overall dimensions of standard and mining version motors
- 5.3 Overall dimensions of motors with brakes

5. Dimensions et formes de construction

- 5.1 Formes de construction
- 5.2 Dimensions d'encombrement des moteurs standard et pour mine
- 5.3 Dimensions d'encombrement des moteurs à frein

5. Abmessungen und Bauformen

- 5.1 Bauformen
- 5.2 Abmessungen der Standardmotoren und der schlagwettergeschützten Motoren
- 5.3 Abmessungen der Motoren mit Bremse

5. Dimensiones de espacio máximo y formas constructivas

- 5.1 Formas constructivas
- 5.2 Dimensiones totales de los motores estándares y para minas
- 5.3 Dimensiones totales de los motores con freno

ITALIANO ENGLISH FRANÇAIS

DEUTSCH ESPAÑOL

5.

5.1

Forme costruttive

Mounting arrangements

Formes de construction

Bauformen

Formas de fabricación

Le forme costruttive comunemente utilizzate sono raffigurate nella tabella 5A. Su richiesta sono fornite altre forme costruttive.

I motori ordinati nelle forme costruttive IM B3, IM B5 o IM B14 possono essere utilizzati anche per altre posizioni di montaggio:

- IM B3 in IM B6, IM B7, IM B8, IM V5 o IM V6.
- IM B5 in IM V1 o IM V3.
- IM B14 in IM V18 o IM V19.

La normativa per le macchine elettriche a sicurezza prescrive che debba essere impedita la caduta di corpi estranei all'interno del copriventola.

A tale scopo i motori montati in verticale con albero rivolto verso il basso devono avere un tettuccio di protezione sopra il copriventola.

The most commonly used mounting arrangements are shown in the table 5A. Other mounting arrangements are available on request.

Standard motors ordered in basic mounting arrangements (universal mounting arrangements)

IM B3. IM B5 or IM B14 can also be operated in the following different mounting positions:

- IM B3 in IM B6, IM B7, IM B8, IM V5 or IM V6,
- IM B5 in IM V1 or IM V3,
- IM B14 in IM V18 or IM V19.

According to the safety standard for electrical machines, foreign objects must be prevented from falling into the fan cover.

Motors for vertical arrangement with shaft end down are fitted with a protective hood over the fan cowl.

Les formes de construction communément utilisées sont représentées au tableau 5A. Sur demande, d'autres formes de construction peuvent être fournies.

Les moteurs commandés avec les formes de construction IM B3, IM B5 ou IM B14 peuvent également être utilisés dans d'autres positions de montage:

- IM B3 en IM B6, IM B7, IM B8, IM V5 ou IM V6.
- IM B5 en IM V1 ou IM V3,
- IM B14 en IM V18 ou IM V19.

La norme pour les machines électriques à sécurité indique qu'il faut empêcher les corps étrangers de tomber à l'intérieur du carter du ventilateur.

A cette fin, les moteurs installés verticalement avec l'arbre orienté vers le bas doivent être munis d'une tôle de protection placé au-dessus du protège-ventilateur.

Die gewöhnlich verwendeten Bauformen werden in der Tabelle 5A dargestellt. Auf Wunsch können auch andere Bauformen geliefert werden.

Die mit den Bauformen IM B3, IM B5 oder IM B14 bestellten Motoren können auch für andere Montagepositionen verwendet werden:

- IM B3 als IM B6, IM B7, IM B8, IM V5 oder IM V6.
- IM B5 als IM V1 oder IM V3,
- IM B14 als IM V18 oder IM V19.

Die Richtlinie für die elektrischen Maschinen zur Sicherheit schreibt vor, dass das Herabfallen von Fremdkörpern in das Innere der Lüfterhaube geschützt sein muss. Um dies zu verhindern, sind vertikale Motoren, deren Welle nach unten gerichtet ist, mit einem Schutzdach über der Lüfterhaube ausgestattet.

Las formas constructivas utilizadas corrientemente están descritas en la tabla 5A.

Sobre pedido se proporcionan otras formas constructivas.

Los motores requeridos en las formas constructivas IM B3, IM B5 o IM B14 pueden ser utilizados incluso para otras posiciones de montaje:

- IM B3 in IM B6, IM B7, IM B8, IM V5 o IM V6.
- IM B5 in IM V1 o IM V3,
- IM B14 in IM V1 o IM V3,

La normativa sobre las máquinas eléctricas de seguridad prescribe que se debe impedir la caída de cuerpos extraños en el interior de la cubierta del ventilador.

Con este fin los motores instalados en vertical con el eje hacia abajo tiene que tener una tapa de protección por encima del cubre ventilador.

Table 5A

63÷315

Motori con piedi Foot-mounted motor Moteurs à pattes Motoren mit Stützfüßen Motores con patas

CEI 2-14

IEC EN 60034-7 codice I IEC EN 60034-7 codice II

B3 IM B3 IM 1001

IM V5 IM 1011

V6 IM V6 IM 1031

R6 IM_{B6} IM 1051

R7 IM B7 IM 1061

R8 IM B8 IM 1071

63÷315

Motori con flangia: flangia normale, fori di fissaggio passanti Flange-mounted motor: large flange, clearance fixing holes Moteurs à bride trous lisses

Motoren mit Flansch: normaler Flansch, Durchgangslöcher zur Befestigung Motores con brida: brida normal, orificios de fijación de los pasadores

CEI 2-14 IEC EN 60034-7 codice I IEC EN 60034-7 codice II

B5 IM B5 IM 3001

V1 IM V1 IM 3011

٧3 IM V3 IM 3031

63÷132

Motori con flangia: flangia ridotta, fori di fissaggio filettati Flange-mounted motor: small flange, tapped fixing holes

Moteurs à bride trous taraudés

Motoren mit Flansch: reduzierter Flansch, gewindegeschnittene Befestigungslöcher Motores con brida: brida reducida, orificios de fijación fileteados

CEI 2-14 IEC EN 60034-7 codice I IEC EN 60034-7 codice II

B14 IM B14 IM 3601

V18 **IM V18** IM 3611

V19 **IM V19** IM 3631

63÷315

Motori con piedi e flangia: flangia normale, fori di fissaggio passanti Foot and flange-mounted motor: large flange, clearance fixing holes

Moteurs à pattes et bride trous lisses

Motoren mit Stützfüßen und Flansch: normaler Flansch, Durchgangslöcher zur Befestigung

Motores con patas y brida: brida normal, orificios de fijación de los pasadores

CEI 2-14 IEC EN 60034-7 codice I IEC EN 60034-7 codice II

IM B35 IM 2001

IM V15 IM 2011

V6/V3 IM V36 IM 2031

B6/B5 IM 2051

B7/B5 IM 2061

B8/B5 IM 2071

63÷132

Motori con piedi e flangia: flangia ridotta, fori di fissaggio filettati Foot and flange-mounted motor: with small flange, tapped fixing holes

Moteurs à pattes et bride trous taraudés

Motoren mit Stützfüßen und Flansch: reduzierter Flansch, gewindegeschnittene Befestigungslöcher Motores con patas y brida: brida reducida, orificios de fijación fileteados

CEI 2	2-1	4		
IEC I	EΝ	60034-7	codice	Ι
IFC I	FΝ	60034-7	codice	TT

IM B34 IM 2101

V5/V18 IM 2111

V6/V19 IM 2131

B6/B14 IM 2151 B7/B14 IM 2161

B8/B14 IM 2171

ITALIANO ENGLISH FRANÇAIS

DEUTSCH

ESPAÑOL

5.

5.2

Dimensioni d'ingombro motori standard e per miniera

Overall dimensions of standard and mining version motors

Dimensions d'encombrement des moteurs standard et pour mine

Abmessungen der Standardmotoren und der schlagwettergeschützten Motoren

Dimensiones totales de los motores estándares y para minas

63÷315 IM B3 IM B5 IM B35

ESPAÑOL

Туре	Α	AA	AB	ø AC	AD	□AF	AL	В	ВС	ВВ	С	H. _{0.5}	НА	HD	øΚ) L	LC
63	100	25	125	123	145	139	95	80	9.5	105	40	63	6	208	7	247	275.5
71	112	32	140	140	155	139	106	90	11.0	112	45	71	7	226	7	276	311.0
80	125	40	160	158	165	139	142	100	15.0	130	50	80	8	245	9	327	372.5
90 S	140	45	175	178	175	139	125	100	14.0	157	56	90	9	265	9	390	441.0
90 L	140	45	175	178	175	139	125	125	14.0	157	56	90	9	265	9	390	441.0
100	160	45 45	200	196	185	139	125	140	15.0	170	63	100	10	285	12 12	430	490.5
112 132 S	190 216	45 56	235 272	223 258	206 260	139 205	138 163	140 140	17.0 22.0	175 222	70 89	112 132	12 13	318 392	12	475 505	543.5 590.0
132 M-L	216	56	272	258	260	205	163	178	22.0	222	89	132	13	392	12	580	665.0
160 M	254	64	318	310	290	205	166	210	25.0	305	108	160	15	450	14	693	811.0
160 L	254	64	318	310	290	205	166	254	25.0	305	108	160	15	450	14	693	811.0
180 M	279	71	350	359	326	242	223	241	25.0	340	121	180	17	506	14	814	923.5
180 L	279	71	350	359	326	242	223	279	25.0	340	121	180	17	506	14	814	923.5
200 225 S	318 356	75 78	393	395	346	242	230	305	27.0	360	133	200	18	546	18	867	985.0 1090.0
225 S 225 M 2	356	78	431 431	445 445	371 371	242 242	240 240	286 311	38.0 38.0	380 380	149 149	225 225	20 20	596 596	18 18	945 915	1030.0
225 M 4-8	356	78	431	445	371	242	240	311	38.0	380	149	225	20	596	18	945	1090.0
250 M 2	406	95	500	467	396	242	221	349	33.0	415	168	250	22	646	24	963	1110.0
250 M 4-8	406	95	500	467	396	242	221	349	33.0	415	168	250	22	646	24	963	1110.0
280 S 2	457	90	540 540	558 550	548 548	320	316	368	80.0	550 550	190	280	41	828	25	1119	1272.0
280 S 4-8 280 M 2	457 457	90 90	540 540	558 558	548 548	320 320	316 316	368 419	80.0 80.0	550 550	190 190	280 280	41 41	828 828	25 25	1119 1119	1272.0 1272.0
280 M 4-8	457	90	540	558	548	320	316	419	80.0	550	190	280	41	828	25	1119	1272.0
315 S 2	508	110	590	558	548	320	316	406	68,5	560	216	315	41	863	27	1269	1420.0
315 S 4-8	508	110	590	558	548	320	316	406	68,5	560	216	315	41	863	27	1299	1480.0
315 M 2 315 M 4-8	508 508	110 110	590 590	558 558	548 548	320 320	316 316	457 457	68,5 68,5	560 560	216 216	315 315	41 41	863 863	27 27	1269 1299	1420.0 1480.0
315 L 2	508	100	590	626	612	320	330	457	68.5	610	216	315	41	927	28	1407	1560.0
315 L 4-8	508	100	590	626	612	320	330	457	68.5	610	216	315	41	927	28	1437	1620.0
Туре	* LM	AO		60423 x O	AG	ø D ø DA	E EA	F FA	GA GC	GD GF	DB DC	LA	øΜ	øΝ	øΡ	♦ S	Т
Type 63		AO 24	n. 2	60423 x O M25	AG 100							LA 6.5	ø M 115	ø N 95j6	ø P		T 3.0
	LM		n. :	x O		ø DA	EA	FA	GC	GF	DC					S	
63	LM 275	24	n. : 1 x l	x O M25	100	ø DA 11j6	EA 23	FA 4	GC 12.5	GF 4	DC M4	6.5	115	95j6	140	S 10	3.0
63 71 80 90 S	275 305 356 418	24 24 24 24	n. x 1 x 1 x 1 x 1 x	x O M25 M25 M25 M25 M25	100 110 120 130	ø DA 11j6 14j6 19j6 24j6	23 30 40 50	FA 4 5 6 8	GC 12.5 16.0 21.5 27.0	GF 4 5 6 7	M4 M5 M6 M8	6.5 6.5 11.0 12.0	115 130 165 165	95j6 110j6 130j6 130j6	140 160 200 200	S 10 10 12 12	3.0 3.5 3.5 3.5
63 71 80 90 S 90 L	275 305 356 418 418	24 24 24 24 24 24	n. : 1 x 1 x 1 x 1 x 1 x 1 x 1 x	x O M25 M25 M25 M25 M25 M25	100 110 120 130 130	ø DA 11j6 14j6 19j6 24j6 24j6	23 30 40 50 50	FA 4 5 6 8 8	GC 12.5 16.0 21.5 27.0 27.0	GF 4 5 6 7 7	M4 M5 M6 M8 M8	6.5 6.5 11.0 12.0 12.0	115 130 165 165 165	95j6 110j6 130j6 130j6 130j6	140 160 200 200 200	\$ 10 10 12 12 12 12	3.0 3.5 3.5 3.5 3.5
63 71 80 90 S 90 L 100	275 305 356 418 418 458	24 24 24 24 24 24 24	1 x l 1 x l	x O M25 M25 M25 M25 M25 M25 M25	100 110 120 130 130 140	ø DA 11j6 14j6 19j6 24j6 24j6 28j6	23 30 40 50 50 60	FA 4 5 6 8 8 8 8	GC 12.5 16.0 21.5 27.0 27.0 31.0	GF 4 5 6 7 7 7	M4 M5 M6 M8 M8 M10	6.5 6.5 11.0 12.0 12.0 14.0	115 130 165 165 165 215	95j6 110j6 130j6 130j6 130j6 180j6	140 160 200 200 200 250	\$ 10 10 12 12 12 15	3.0 3.5 3.5 3.5 3.5 4.0
63 71 80 90 S 90 L 100 112	275 305 356 418 418 458 503	24 24 24 24 24 24 24 24	n. 3 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x	x O M25 M25 M25 M25 M25 M25 M25 M25	100 110 120 130 130 140 161	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6	23 30 40 50 50 60	FA 4 5 6 8 8 8 8 8	GC 12.5 16.0 21.5 27.0 27.0 31.0 31.0	GF 4 5 6 7 7 7	M4 M5 M6 M8 M8 M10 M10	6.5 6.5 11.0 12.0 12.0 14.0 16.0	115 130 165 165 165 215 215	95j6 110j6 130j6 130j6 130j6 180j6 180j6	140 160 200 200 200 250 250	\$ 10 10 12 12 12 15 15	3.0 3.5 3.5 3.5 3.5 4.0 4.0
63 71 80 90 S 90 L 100	275 305 356 418 418 458	24 24 24 24 24 24 24	n.: 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 2 x	x O M25 M25 M25 M25 M25 M25 M25	100 110 120 130 130 140	ø DA 11j6 14j6 19j6 24j6 24j6 28j6	23 30 40 50 50 60	FA 4 5 6 8 8 8 8	GC 12.5 16.0 21.5 27.0 27.0 31.0	GF 4 5 6 7 7 7	M4 M5 M6 M8 M8 M10	6.5 6.5 11.0 12.0 12.0 14.0	115 130 165 165 165 215	95j6 110j6 130j6 130j6 130j6 180j6	140 160 200 200 200 250	\$ 10 10 12 12 12 15	3.0 3.5 3.5 3.5 3.5 4.0
63 71 80 90 S 90 L 100 112 132 S	275 305 356 418 418 458 503 550 625 738	24 24 24 24 24 24 24 24 35	1 x 1 x 1 x 1 x 1 x 1 x 1 x 2 x 2 x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32	100 110 120 130 130 140 161 185	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6	EA 23 30 40 50 60 60 80	FA 4 5 6 8 8 8 8 10	GC 12.5 16.0 21.5 27.0 27.0 31.0 31.0 41.0	GF 4 5 6 7 7 7 8	M4 M5 M6 M8 M8 M10 M10 M12	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0	115 130 165 165 165 215 215 265	95j6 110j6 130j6 130j6 130j6 180j6 180j6 230j6	140 160 200 200 200 250 250 300	\$ 10 10 12 12 12 15 15	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 4.0 5.0
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L	275 305 356 418 418 458 503 550 625 738 738	24 24 24 24 24 24 24 24 35 35 35 35	n.: 1x 1x 1x 1x 1x 1x 1x 1x 1x 2x 2x 2x 2x	x O M25	100 110 120 130 130 140 161 185 185 215 215	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6	23 30 40 50 50 60 60 80 80 110	FA 4 5 6 8 8 8 10 10 12 12	GC 12.5 16.0 21.5 27.0 27.0 31.0 41.0 41.0 45.0 45.0	GF 4 5 6 7 7 7 8 8 8 8	M4 M5 M6 M8 M8 M10 M10 M12 M12 M16 M16	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 17.0 18.0	115 130 165 165 165 215 215 265 265 300 300	95j6 110j6 130j6 130j6 130j6 180j6 180j6 230j6 230j6 250h6 250h6	140 160 200 200 200 250 250 300 300 350 350	\$ 10 10 12 12 12 15 15 15 18 18	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 4.0 5.0 5.0
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M	LM 275 305 356 418 418 458 503 550 625 738 738 860	24 24 24 24 24 24 24 35 35 35 35	n.: 1x 1x 1x 1x 1x 1x 1x 1x 1x 2x 2x 2x 2x 2x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40	100 110 120 130 130 140 161 185 185 215 215 266	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6	EA 23 30 40 50 60 60 80 80 110 110 110	FA 4 5 6 8 8 8 10 10 12 12 14	GC 12.5 16.0 21.5 27.0 27.0 31.0 41.0 41.0 45.0 45.0 52.0	GF 4 5 6 7 7 7 8 8 8 8 9	M4 M5 M6 M8 M8 M10 M10 M12 M16 M16 M16	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 17.0 18.0 18.0 20.0	115 130 165 165 165 215 215 265 265 300 300 300	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 250h6 250h6 250h6	140 160 200 200 200 250 250 300 350 350 350	\$ 10 10 12 12 12 15 15 15 18 18 18	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 4.0 5.0 5.0
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L	LM 275 305 356 418 418 458 503 550 625 738 738 860 860	24 24 24 24 24 24 24 24 35 35 35 35 38	n.: 1x 1x 1x 1x 1x 1x 1x 1x 1x 2x 2x 2x 2x 2x 2x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40 M40	100 110 120 130 130 140 161 185 185 215 215 266 266	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6	EA 23 30 40 50 50 60 80 80 110 110 110	FA 4 5 6 8 8 8 10 10 12 12 14 14	GC 12.5 16.0 21.5 27.0 27.0 31.0 41.0 41.0 45.0 45.0 52.0	GF 4 5 6 7 7 7 8 8 8 8 9 9	M4 M5 M6 M8 M8 M10 M10 M12 M16 M16 M16 M16	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 17.0 18.0 20.0 20.0	115 130 165 165 165 215 215 265 265 300 300 300 300	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 250h6 250h6 250h6 250h6	140 160 200 200 250 250 300 300 350 350 350	\$ 10 10 12 12 12 15 15 15 18 18 18 18	3.0 3.5 3.5 3.5 4.0 4.0 4.0 4.0 5.0 5.0 5.0
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L 200	LM 275 305 356 418 418 458 503 550 625 738 738 860 860 913	24 24 24 24 24 24 24 25 35 35 35 35 38 38	n.: 1x 1x 1x 1x 1x 1x 1x 1x 1x 2x 2x 2x 2x 2x 2x 2x 2x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40 M40 M40	100 110 120 130 130 140 161 185 185 215 215 266 266 286	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6 48k6 55m6	EA 23 30 40 50 50 60 60 80 80 110 110 110 110	FA 4 5 6 8 8 8 10 10 12 12 14 14 16	GC 12.5 16.0 21.5 27.0 27.0 31.0 41.0 41.0 45.0 45.0 52.0 59.0	GF 4 5 6 7 7 7 8 8 8 8 9 9 10	M4 M5 M6 M8 M8 M10 M10 M12 M12 M16 M16 M16 M20	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 18.0 18.0 20.0 20.0	115 130 165 165 165 215 215 265 265 300 300 300 300 350	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 250h6 250h6 250h6 250h6 300h6	140 160 200 200 250 250 300 350 350 350 350 400	\$ 10 10 12 12 12 15 15 15 18 18 18 18 18	3.0 3.5 3.5 3.5 4.0 4.0 4.0 4.0 5.0 5.0 5.0 5.0
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L	LM 275 305 356 418 418 458 503 550 625 738 738 860 860	24 24 24 24 24 24 24 24 35 35 35 35 38	n.: 1x 1x 1x 1x 1x 1x 1x 1x 1x 2x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40 M40	100 110 120 130 130 140 161 185 185 215 215 266 266	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6	EA 23 30 40 50 50 60 80 80 110 110 110	FA 4 5 6 8 8 8 10 10 12 12 14 14	GC 12.5 16.0 21.5 27.0 27.0 31.0 41.0 41.0 45.0 45.0 52.0	GF 4 5 6 7 7 7 8 8 8 8 9 9	M4 M5 M6 M8 M8 M10 M10 M12 M16 M16 M16 M16	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 17.0 18.0 20.0 20.0	115 130 165 165 165 215 215 265 265 300 300 300 300	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 250h6 250h6 250h6 250h6	140 160 200 200 250 250 300 300 350 350 350	\$ 10 10 12 12 12 15 15 15 18 18 18 18	3.0 3.5 3.5 3.5 4.0 4.0 4.0 4.0 5.0 5.0 5.0
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L 200 225 S 225 M 2 225 M 4-8	275 305 356 418 418 458 503 550 625 738 738 860 860 913 991 991	24 24 24 24 24 24 24 25 35 35 35 35 38 38 38 38 38	n.: 1x 1x 1x 1x 1x 1x 1x 1x 1x 2x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40 M40 M40 M40 M40 M40 M40	100 110 120 130 130 140 161 185 215 215 266 266 286 311 311	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6 48k6 55m6 60m6	EA 23 30 40 50 50 60 60 80 80 110 110 110 110 140 140 140	FA 4 5 6 8 8 8 10 10 12 12 14 14 16 18 16 18	GC 12.5 16.0 21.5 27.0 31.0 31.0 41.0 45.0 45.0 52.0 52.0 59.0 64.0 59.0 64.0	GF 4 5 6 7 7 7 8 8 8 8 9 9 10 11 10 11	M4 M5 M6 M8 M8 M10 M10 M12 M16 M16 M16 M20 M20 M20 M20	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 18.0 20.0 20.0 22.0 22.0 22.0 22.0	115 130 165 165 165 215 215 265 265 300 300 300 300 350 400 400 400	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 250h6 250h6 250h6 350h6 350h6 350h6	140 160 200 200 250 250 300 350 350 350 400 450 450	\$ 10 10 12 12 12 15 15 15 18 18 18 18 18 18 18	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L 200 225 S 225 M 2 225 M 4-8 250 M 2	LM 275 305 356 418 418 458 503 550 625 738 738 860 913 991 991 991 1006	24 24 24 24 24 24 24 35 35 35 35 38 38 38 38 38 38	n.: 1x 1x 1x 1x 1x 1x 1x 1x 1x 2x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40 M40 M40 M40 M40 M40 M40 M40 M40	100 110 120 130 130 140 161 185 215 215 266 266 286 311 311 311 336	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6 455m6 60m6 55m6 60m6	EA 23 30 40 50 50 60 80 80 110 110 110 110 140 140 140	FA 4 5 6 8 8 8 10 10 12 12 14 14 16 18 16 18	GC 12.5 16.0 21.5 27.0 27.0 31.0 41.0 41.0 45.0 45.0 52.0 52.0 59.0 64.0 64.0	GF 4 5 6 7 7 7 8 8 8 8 9 9 10 11 10 11 11	M4 M5 M6 M8 M8 M10 M10 M12 M16 M16 M16 M20 M20 M20 M20 M20 M20	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 18.0 20.0 20.0 22.0 22.0 22.0 22.0 22.0	115 130 165 165 165 215 215 265 265 300 300 300 300 350 400 400 400 500	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 250h6 250h6 250h6 350h6 350h6 350h6 450h6	140 160 200 200 250 250 300 350 350 350 400 450 450 450 550	\$ 10 10 12 12 12 15 15 15 18 18 18 18 18 18 18 18	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L 200 225 S 225 M 2 225 M 4-8 250 M 2 250 M 4-8	275 305 356 418 418 458 503 550 625 738 860 860 913 991 991 1006 1006	24 24 24 24 24 24 24 35 35 35 35 38 38 38 38 38 38 38	n.: 1x 1x 1x 1x 1x 1x 1x 1x 1x 2x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40	100 110 120 130 130 140 161 185 185 215 215 266 266 286 311 311 336 336	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6 455m6 60m6 65m6 60m6 65m6	EA 23 30 40 50 50 60 80 80 110 110 110 140 140 140 140	FA 4 5 6 8 8 8 10 10 12 12 14 14 16 18 16 18 18	GC 12.5 16.0 21.5 27.0 31.0 31.0 41.0 45.0 45.0 52.0 52.0 59.0 64.0 64.0 69.0	GF 4 5 6 7 7 7 8 8 8 8 9 9 10 11 10 11 11 11	M4 M5 M6 M8 M8 M10 M10 M12 M16 M16 M16 M20	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 18.0 20.0 20.0 22.0 22.0 22.0 22.0 22.0 2	115 130 165 165 165 215 215 265 265 300 300 300 300 350 400 400 400 500 500	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 250h6 250h6 250h6 350h6 350h6 350h6 450h6 450h6	140 160 200 200 250 250 300 350 350 350 400 450 450 550 550	\$ 10 10 12 12 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L 200 225 S 225 M 2 225 M 4-8 250 M 2 250 M 4-8 280 S 2	275 305 356 418 418 458 503 550 625 738 738 860 913 991 991 1006 1006 1215	24 24 24 24 24 24 24 35 35 35 35 38 38 38 38 38 38 38 38	n.: 1x 1x 1x 1x 1x 1x 1x 1x 1x 2x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40	100 110 120 130 130 140 161 185 185 215 215 266 266 286 311 311 311 336 336 410	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6 55m6 60m6 65m6 60m6 65m6	EA 23 30 40 50 50 60 80 80 110 110 110 140 140 140 140 140	FA 4 5 6 8 8 8 10 10 12 12 14 14 16 18 16 18 18 18	GC 12.5 16.0 21.5 27.0 27.0 31.0 41.0 41.0 45.0 52.0 52.0 59.0 64.0 69.0 69.0	GF 4 5 6 7 7 7 8 8 8 8 9 9 10 11 10 11 11 11 11	M4 M5 M6 M8 M8 M10 M10 M12 M16 M16 M20	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 18.0 20.0 20.0 22.0 22.0 22.0 22.0 22.0 18.0	115 130 165 165 165 215 215 265 265 300 300 300 300 350 400 400 400 500 500	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 250h6 250h6 250h6 350h6 350h6 350h6 450h6 450h6 450h6	140 160 200 200 250 250 300 350 350 350 400 450 450 450 550 550	\$ 10 10 12 12 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L 200 225 S 225 M 2 225 M 4-8 250 M 2 250 M 4-8	275 305 356 418 418 458 503 550 625 738 860 860 913 991 991 1006 1006	24 24 24 24 24 24 24 35 35 35 35 38 38 38 38 38 38 38	n.: 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40	100 110 120 130 130 140 161 185 185 215 215 266 266 286 311 311 336 336	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6 455m6 60m6 65m6 60m6 65m6	EA 23 30 40 50 50 60 80 80 110 110 110 140 140 140 140	FA 4 5 6 8 8 8 10 10 12 12 14 14 16 18 16 18 18	GC 12.5 16.0 21.5 27.0 31.0 31.0 41.0 45.0 45.0 52.0 52.0 59.0 64.0 64.0 69.0	GF 4 5 6 7 7 7 8 8 8 8 9 9 10 11 10 11 11 11	M4 M5 M6 M8 M8 M10 M10 M12 M16 M16 M16 M20	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 18.0 20.0 20.0 22.0 22.0 22.0 22.0 22.0 2	115 130 165 165 165 215 215 265 265 300 300 300 300 350 400 400 400 500 500	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 250h6 250h6 250h6 350h6 350h6 350h6 450h6 450h6	140 160 200 200 250 250 300 350 350 350 400 450 450 550 550	\$ 10 10 12 12 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L 200 225 S 225 M 2 225 M 4-8 250 M 4-8 280 S 2 280 S 4-8 280 M 2 280 M 4-8	275 305 356 418 418 458 503 550 625 738 738 860 913 991 991 1006 1006 1215 1215 1215	24 24 24 24 24 24 24 35 35 35 35 38 38 38 38 38 38 56 56 56 56	n.: 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40	100 110 120 130 130 140 161 185 185 215 215 266 266 311 311 311 336 336 410 410 410 410	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6 55m6 60m6 65m6 65m6 65m6 75m6 65m6 75m6	EA 23 30 40 50 50 60 60 80 80 110 110 110 140 140 140 140 140 140 14	FA 4 5 6 8 8 8 10 10 12 12 14 14 16 18 16 18 18 18 20 18 20	GC 12.5 16.0 21.5 27.0 27.0 31.0 31.0 41.0 45.0 45.0 52.0 59.0 64.0 69.0 69.0 79.5 69.0 79.5	GF 4 5 6 7 7 7 8 8 8 8 9 9 10 11 10 11 11 11 11 11 11 11 12 11 12	M4 M5 M6 M8 M8 M10 M10 M12 M12 M16 M16 M16 M20	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 17.0 18.0 20.0 20.0 22.0 22.0 22.0 22.0 22.0 18.0 18.0 18.0	115 130 165 165 165 215 215 265 265 300 300 300 350 400 400 500 500 500 500	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 250h6 250h6 250h6 250h6 350h6 350h6 350h6 450h6 450h6 450h6 450h6	140 160 200 200 250 250 300 350 350 350 400 450 450 550 550 550 550 550	\$ 10 10 12 12 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L 200 225 S 225 M 2 225 M 2 225 M 4-8 250 M 4-8 280 S 4-8 280 M 4-8 315 S 2	275 305 356 418 418 458 503 550 625 738 738 860 860 913 991 991 1006 1006 1215 1215 1215 1215 1365	24 24 24 24 24 24 24 35 35 35 35 38 38 38 38 38 38 56 56 56 56	n.: 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40	100 110 120 130 130 140 161 185 185 215 266 266 286 311 311 336 410 410 410 410	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6 55m6 60m6 65m6 65m6 65m6 75m6 65m6 65m6 65m6 65	EA 23 30 40 50 50 60 60 80 80 110 110 110 140 140 140 140 140 140 14	FA 4 5 6 8 8 8 10 10 12 12 14 14 16 18 16 18 18 18 20 18	GC 12.5 16.0 21.5 27.0 27.0 31.0 41.0 41.0 45.0 52.0 52.0 59.0 64.0 69.0 69.0 79.5 69.0 79.5 69.0	GF 4 5 6 7 7 7 8 8 8 8 9 9 10 11 10 11 11 11 11 11 11 12 11 12 11	M4 M5 M6 M8 M8 M10 M10 M12 M12 M16 M16 M16 M20	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 17.0 18.0 20.0 20.0 22.0 22.0 22.0 22.0 18.0 18.0 18.0 18.0	115 130 165 165 165 215 215 265 265 300 300 300 350 400 400 500 500 500 500 600	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 250h6 250h6 250h6 350h6 350h6 350h6 450h6 450h6 450h6 450h6 450h6 550h6	140 160 200 200 250 250 300 350 350 350 450 450 450 550 550 550 550 550 660	\$ 10 10 12 12 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L 200 225 S 225 M 2 225 M 4-8 250 M 4-8 280 S 2 280 S 4-8 280 M 4-8 315 S 2 315 S 4-8	275 305 356 418 418 458 503 550 625 738 738 860 913 991 991 1006 1006 1215 1215 1215 1215 1365 1395	24 24 24 24 24 24 24 35 35 35 35 38 38 38 38 38 38 56 56 56 56 56	n.: 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40	100 110 120 130 130 140 161 185 185 215 266 266 286 311 311 336 410 410 410 410 410 410	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6 55m6 60m6 65m6 65m6 65m6 65m6 65m6 65m	EA 23 30 40 50 60 60 80 80 110 110 110 140 140 140 140 140 140 14	FA 4 5 6 8 8 8 10 10 12 12 14 14 16 18 16 18 18 18 20 18 20 18 22	GC 12.5 16.0 21.5 27.0 27.0 31.0 31.0 41.0 45.0 45.0 52.0 59.0 64.0 69.0 69.0 79.5 69.0 79.5 69.0 85.0	GF 4 5 6 7 7 7 8 8 8 8 9 9 10 11 10 11 11 11 11 11 11 11 11 11 11	M4 M5 M6 M8 M8 M10 M10 M12 M12 M16 M16 M20	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 17.0 18.0 20.0 20.0 22.0 22.0 22.0 22.0 18.0 18.0 18.0 18.0 22.0 22.0 22.0	115 130 165 165 165 215 215 265 265 300 300 300 350 400 400 500 500 500 500 600 600	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 230j6 250h6 250h6 250h6 350h6 350h6 450h6 450h6 450h6 450h6 450h6 550h6 550h6	140 160 200 200 250 250 300 350 350 350 400 450 450 550 550 550 550 660 660	\$ 10 10 12 12 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L 200 225 S 225 M 2 225 M 4-8 250 M 4-8 250 M 4-8 280 S 2 280 S 4-8 280 M 4-8 315 S 2 315 S 4-8 315 M 2	275 305 356 418 418 458 503 550 625 738 738 860 860 913 991 991 1006 1006 1215 1215 1215 1215 1365	24 24 24 24 24 24 24 35 35 35 35 38 38 38 38 38 38 56 56 56 56	n.: 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40	100 110 120 130 130 140 161 185 185 215 266 266 286 311 311 336 410 410 410 410	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6 55m6 60m6 65m6 65m6 65m6 75m6 65m6 65m6 65m6 65	EA 23 30 40 50 50 60 60 80 80 110 110 110 140 140 140 140 140 140 14	FA 4 5 6 8 8 8 10 10 12 12 14 14 16 18 16 18 18 18 20 18	GC 12.5 16.0 21.5 27.0 27.0 31.0 41.0 41.0 45.0 52.0 52.0 59.0 64.0 69.0 69.0 79.5 69.0 79.5 69.0	GF 4 5 6 7 7 7 8 8 8 8 9 9 10 11 10 11 11 11 11 11 11 12 11 12 11	M4 M5 M6 M8 M8 M10 M10 M12 M12 M16 M16 M16 M20	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 17.0 18.0 20.0 20.0 22.0 22.0 22.0 22.0 18.0 18.0 18.0 18.0	115 130 165 165 165 215 215 265 265 300 300 300 350 400 400 500 500 500 500 600	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 230j6 250h6 250h6 250h6 350h6 350h6 450h6 450h6 450h6 450h6 450h6 550h6 550h6	140 160 200 200 250 250 300 350 350 350 450 450 450 550 550 550 550 550 660	\$ 10 10 12 12 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L 200 225 S 225 M 2 225 M 4-8 250 M 4-8 280 S 2 280 S 4-8 280 M 4-8 315 S 2 315 S 4-8	275 305 356 418 418 458 503 550 625 738 738 860 860 913 991 991 1006 1006 1215 1215 1215 1215 1365 1395 1365	24 24 24 24 24 24 24 24 35 35 35 35 38 38 38 38 38 38 56 56 56 56 56 56	n.: 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 2 x 2	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40	100 110 120 130 130 140 161 185 185 215 215 266 266 286 311 311 336 410 410 410 410 410 410 410	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 48k6 455m6 60m6 65m6 65m6 65m6 65m6 65m6 65m6	EA 23 30 40 50 60 60 80 80 110 110 110 140 140 140 140 140 140 14	FA 4 5 6 8 8 8 10 10 12 12 14 14 16 18 16 18 18 20 18 20 18 22 18	GC 12.5 16.0 21.5 27.0 27.0 31.0 31.0 41.0 45.0 45.0 52.0 59.0 64.0 69.0 69.0 79.5 69.0 79.5 69.0 85.0 69.0	GF 4 5 6 7 7 7 8 8 8 8 9 9 10 11 10 11 11 11 11 11 11 11 11 11 11	M4 M5 M6 M8 M8 M10 M10 M12 M12 M16 M16 M16 M20	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 17.0 18.0 20.0 20.0 22.0 22.0 22.0 22.0 18.0 18.0 18.0 18.0 22.0 22.0 22.0 22.0	115 130 165 165 165 215 215 265 265 300 300 300 350 400 400 500 500 500 500 600 600 600	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 230j6 250h6 250h6 250h6 350h6 350h6 450h6 450h6 450h6 450h6 450h6 550h6 550h6	140 160 200 200 250 250 300 350 350 350 400 450 450 550 550 550 550 660 660 660	\$ 10 10 12 12 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
63 71 80 90 S 90 L 100 112 132 S 132 M-L 160 M 160 L 180 M 180 L 200 225 S 225 M 2 225 M 4-8 250 M 4-8 280 S 2 280 S 4-8 280 M 4-8 315 S 2 315 S 4-8 315 M 2 315 M 4-8	275 305 356 418 418 458 503 550 625 738 738 860 860 913 991 991 1006 1006 1215 1215 1215 1215 1365 1395	24 24 24 24 24 24 24 24 35 35 35 38 38 38 38 38 38 56 56 56 56 56 56	n.: 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 2 x 2	x O M25 M25 M25 M25 M25 M25 M25 M25 M25 M32 M32 M32 M32 M40	100 110 120 130 130 140 161 185 185 215 215 266 266 286 311 311 336 410 410 410 410 410 410 410 410 410	ø DA 11j6 14j6 19j6 24j6 24j6 28j6 28j6 38k6 38k6 42k6 42k6 42k6 48k6 55m6 60m6 65m6 65m6 65m6 65m6 65m6 65m	EA 23 30 40 50 60 60 80 80 110 110 110 140 140 140 140 140 140 14	FA 4 5 6 8 8 8 10 10 12 12 14 14 16 18 18 18 20 18 20 18 22 18 22	GC 12.5 16.0 21.5 27.0 27.0 31.0 31.0 41.0 45.0 45.0 52.0 59.0 64.0 69.0 69.0 79.5 69.0 79.5 69.0 85.0 69.0 85.0	GF 4 5 6 7 7 7 8 8 8 8 9 9 10 11 10 11 11 11 11 11 11 11 11 11 11	M4 M5 M6 M8 M8 M10 M10 M12 M12 M16 M16 M16 M20	6.5 6.5 11.0 12.0 12.0 14.0 16.0 17.0 17.0 18.0 20.0 20.0 22.0 22.0 22.0 22.0 18.0 18.0 18.0 18.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0 2	115 130 165 165 165 215 215 265 265 300 300 300 300 350 400 400 500 500 500 500 600 600 600 600	95j6 110j6 130j6 130j6 130j6 180j6 230j6 230j6 230j6 250h6 250h6 250h6 350h6 350h6 450h6 450h6 450h6 450h6 450h6 550h6 550h6 550h6	140 160 200 200 250 250 300 350 350 350 400 450 450 550 550 550 550 660 660 660 660	\$ 10 10 12 12 15 15 15 15 18 18 18 18 18 18 18 18 18 18 18 18 18	3.0 3.5 3.5 3.5 3.5 4.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5

• vedi pagina 198 ; see page 198 ; voir page 198 ; siehe Seite 198 ; véase página 198 ;

* vedi pagina 201 ; see page 201 ; voir page 201 ; siehe Seite 201 ; véase página 201 ;

ITALIANO ENGLISH FRANÇAIS DEUTSCH

ESPAÑOL

5. 5.2

Dimensioni d'ingombro motori standard e per miniera

Overall dimensions of standard and mining version motors Dimensions d'encombrement des moteurs standard et pour mine

Abmessungen der Standardmotoren und der schlagwettergeschützten Motoren

Dimensiones totales de los motores estándares y para minas

63÷160 IM B14 IM B34

Туре	Α	AA	AB	ø AC	AD	☐ AF	AL	В	ВС	ВВ	С	H. _{0.5}	НА	HD	øΚ	▶ L	LC
63	100	25	125	123	145	139	95	80	9.5	105	40	63	6	208	7	247	275.5
71	112	32	140	140	155	139	106	90	11.0	112	45	71	7	226	7	276	311.0
80	125	40	160	158	165	139	142	100	15.0	130	50	80	8	245	9	327	372.5
90 S	140	45	175	178	175	139	125	100	14.0	157	56	90	9	265	9	390	441.0
90 L	140	45	175	178	175	139	125	125	14.0	157	56	90	9	265	9	390	441.0
100	160	45	200	196	185	139	125	140	15.0	170	63	100	10	285	12	430	490.5
112	190	45	235	223	206	139	138	140	17.0	175	70	112	12	318	12	475	543.5
132 S	216	56	272	258	260	205	163	140	22.0	222	89	132	13	392	12	505	590.0
132 M-L	216	56	272	258	260	205	163	178	22.0	222	89	132	13	392	12	580	665.0
160 M	254	64	318	310	290	205	166	210	25.0	305	108	160	15	450	14	693	811.0
160 L	254	64	318	310	290	205	166	254	25.0	305	108	160	15	450	14	693	811.0
1																	

Туре	* LM	AO	IEC 60423 n. x O	AG	ø D ø DA	E EA	F FA	GA GC	GD GF	DB DC	ø M	øΝ	øΡ	♦ S	Т
63	275	24	1 x M25	100	11j6	23	4	12.5	4	M4	75	60j6	90	M5	2.5
71	305	24	1 x M25	110	14j6	30	5	16.0	5	M5	85	70j6	105	M6	2.5
80	356	24	1 x M25	120	19j6	40	6	21.5	6	M6	100	80j6	120	M6	3.0
90 S 90 L	418 418	24 24	1 x M25 1 x M25	130 130	24j6 24j6	50 50	8 8	27.0 27.0	7 7	M8 M8	115 115	95j6 95j6	140 140	M8 M8	3.0 3.0
100	458	24	1 x M25	140	28j6	60	8	31.0	7	M10	130	110j6	160	M8	3.5
112	503	24	1 x M25	161	28j6	60	8	31.0	7	M10	130	110j6	160	M8	3.5
132 S 132 M-L	550 625	35 35	2 x M32 2 x M32	185 185	38k6 38k6	80 80	10 10	41.0 41.0	8 8	M12 M12	165 165	130j6 130j6	200 200	M10 M10	3.5 3.5
160 M 160 L	738 738	35 35	2 x M32 2 x M32	215 215	42k6 42k6	110 110	12 12	45.0 45.0	8 8	M16 M16	215 215	180h6 180h6	250 250	M12 M12	4.0 4.0

Quote non impegnative Tolerances allowed Dimensions données à titre indicatif Übliche Toleranzen Cotas no vinculantes la quota L dei motori per miniera corrisponde alla quota LM dei motori antideflagranti per superficie the distance L of the motors for mining applications corresponds to the distance LM of explosion-proof motors for surfaces La dimension L des moteurs pour mine correspond à la dimension LM des moteurs antidéflagrants de surface Der Abstand L bei schlagwettergeschützten Motoren entspricht dem Abstand LM bei explosionsgeschützten Motoren nach Oberfläche

la cota L de los motores para minas corresponde a la cota LM de los motores antideflagrantes para superficie

* parapioggia: normalmente presente solo per montaggio verticale, albero in basso rain canopy: only when vertical shaft-down mounting parapluie: uniquement pour position verticale, arbre vers le bas Regenschutzdach: nur für die Vertikalbauformen tapa de protección contra la lluvia: sólo para montaje en vertical, eje en la parte inferior

1 nella scatola morsetti, 1 sulla carcassa
1 in the terminal box, 1 on the frame
1 à l'intérieur de la boîte à bornes, 1 sur la carcasse
1 am Klemmkasten, 1 am Motorgehäuse
1 en la caja de bornes, 1 en la carcasa

280 e 315 L piedi fissi standard, su richiesta piedi removibili con misure d'ingombro diverse da quelle indicate 280 and 315 L fixed feet. Removable feet available on request with different dimensions 280 et 315 L pieds fixes standards, sur demande pieds amovibles avec des mesures autres que celles indiquées 280 und 315 L ortsfeste Standardfüße, auf Wunsch entfernbare Füße mit von den angegebenen abweichenden Abmessungen 280 y 315 L pies fijos estándar, bajo pedido pies desmontables de medidas diferentes de las indicadas

ENGLISH

FRANÇAIS

DEUTSCH

ESPAÑOL

Туре	А	AA	AB	ø AC	AD	Ø AF	IM B5	IM B3-B35	В	ВС	BB	С	H- 0,5	НА	HD	øΚ	• L	▼ L1
63	100	25	125	134	176	145	95	95	80	9.5	105	40	63	6	239	7	310	
71	112	32	140	165	186	145	106	106	90	11.0	112	45	71	7	257	7	365	410
80	125	40	160	183	196	145	142	142	100	15.0	130	50	80	8	276	9	423	478
90 S 90 L	140 140	45 45	175 175	208 208	206 206	145 145	125 125	125 125	100 125	14.0 14.0	157 157	56 56	90 90	9 9	296 296	9 9	502 502	557 557
100	160	45	200	234	216	145	125	125	140	15.0	170	63	100	10	316	12	537	595
112	190	45	235	259	237	145	228	138	140	17.0	175	70	112	12	349	12	609	668
132 S 132 M-L	216 216	56 56	272 272	311 311	260 260	205 205	193 268	163 163	140 178	22.0 22.0	222 222	89 89	132 132	13 13	392 392	12 12	650 725	722 797
160 M 160 L	254 254	64 64	318 318	348 348	290 290	205 205	311 311	166 166	210 254	25.0 25.0	305 305	108 108	160 160	15 15	450 450	14 14	823 823	901 901

Tuma	*▼	۸٥	IEC 60423	AG	~ D	F	F	GA	GD	DB	ΙΛ	~ 1.1	~ N	~ D	c	_
Туре	LM	AO	n. x O	AG	ø D		Г	GA	GD	סט	LA	øΜ	øΝ	øΡ	S	ı
63		26	1xM25 1xM20	96	11j6	23	4	12.5	4	M4	6.5	115	95j6	140	10	3
71	438	26	1xM25 1xM20	106	14j6	30	5	16.0	5	M5	6.5	130	110j6	160	10	3.5
80	507	26	1xM25 1xM20	116	19j6	40	6	21.5	6	M6	11	165	130j6	200	12	3.5
90 S	585	26	1xM25 1xM20	126	24j6	50	8	27.0	7	M8	12	165	130j6	200	12	3.5
90 L	585	26	1xM25 1xM20	126	24j6	50	8	27.0	7	M8	12	165	130j6	200	12	3.5
100	624	26	1xM25 1xM20	136	28j6	60	8	31.0	7	M10	14	215	180j6	250	15	4
112	697	26	1xM25 1xM20	157	28j6	60	8	31.0	7	M10	16	215	180j6	250	15	4
132 S	767	35	2xM32 1xM20	185	38k6	80	10	41.0	8	M12	17	265	230j6	300	15	4
132 M-L	842	35	2xM32 1xM20	185	38k6	80	10	41.0	8	M12	17	265	230j6	300	15	4
160 M	946	35	2xM32 1xM20	215	42k6	110	12	45.0	8	M16	18	300	250h6	350	18	5
160 L	946	35	2xM32 1xM20	215	42k6	110	12	45.0	8	M16	18	300	250h6	350	18	5

Versione DB, DC Version DB, DC Version DB, DC Ausführung DB, DC Versión DB, DC

Versione HB, HC Version HB, HC Version HB, HC Ausführung HB, HC Versión HB, HC

♣ 1 nella scatola morsetti, 1 sulla carcassa 1 in the terminal box, 1 on the frame

1 à l'intérieur de la boîte à bornes, 1 sur la carcasse 1 am Klemmkasten, 1 am Motorgehäuse

1 en la caja de bornes, 1 en la carcasa

Quote non impegnative Tolerances allowed Dimensions données à titre indicatif Übliche Toleranzen Cotas no vinculantes

parapioggia: normalmente presente solo nei motori autoventilati (IC411) per montaggio verticale, albero in basso rain cover: normally found only on self-ventilating motors (IC411) for vertical assembly, shaft at the bottom capot parapluie: normalement, elle n'est présente que sur les moteurs autoventilés (IC411) destinés à un montage vertical, arbre en bas Regenschutz: ist normalerweise nur bei den eigenbelüfteten Motoren (IC411) für die senkrechte Montage, Welle unten, vorhanden tapa de protección contra la lluvia: normalmente sólo está presente en los motores autoventilados (IC411) para el montaje en vertical, con el eje en la parte inferior

	Dimensioni d'ingombro motori con freno				
	Overall dimensions of motors with brakes	DB	НВ		
	Dimensions d'encombrement des moteurs à frein		HC		
	Abmessungen der Motoren mit Bremse	DC			
3	Dimensiones totales de los motores con freno	63÷160	71÷160	IM B141	I IM B34 I

ITALIANO ENGLISH FRANÇAIS

DEUTSCH

5.

Туре	Α	AA	AB	ø AC	AD	□ AF	IM B14	IM B34 AL	В	ВС	ВВ	С	H- 0,5	НА	HD	øΚ	• L	▼ L1
63	100	25	125	134	176	145	95	95	80	9.5	105	40	63	6	239	7	310	
71	112	32	140	165	186	145	106	106	90	11.0	112	45	71	7	257	7	365	410
80	125	40	160	183	196	145	142	142	100	15.0	130	50	80	8	276	9	423	478
90 S 90 L	140 140	45 45	175 175	208 208	206 206	145 145	125 125	125 125	100 125	14.0 14.0	157 157	56 56	90 90	9 9	296 296	9 9	502 502	557 557
100	160	45	200	234	216	145	125	125	140	15.0	170	63	100	10	316	12	537	595
112	190	45	235	259	237	145	228	138	140	17.0	175	70	112	12	349	12	609	668
132 S 132 M-L	216 216	56 56	272 272	311 311	260 260	205 205	193 268	163 163	140 178	22.0 22.0	222 222	89 89	132 132	13 13	392 392	12 12	650 725	722 797
160 M 160 L	254 254	64 64	318 318	348 348	290 290	205 205	311 311	166 166	210 254	25.0 25.0	305 305	108 108	160 160	15 15	450 450	14 14	823 823	901 901

Туре	* ▼ LM	AO	IEC 60423 n. x O	AG	ø D	Е	F	GA	GD	DB	ø M	øΝ	øΡ	S	T	
63		26	1xM25 1xM20	96	11j6	23	4	12.5	4	M4	75	60j6	90	M5	2.5	
71	438	26	1xM25 1xM20	106	14j6	30	5	16.0	5	M5	85	70j6	105	M6	2.5	
80	507	26	1xM25 1xM20	116	19j6	40	6	21.5	6	M6	100	80j6	120	M6	3	
90 S	585	26	1xM25 1xM20	126	24j6	50	8	27.0	7	M8	115	95j6	140	M8	3	
90 L	585	26	1xM25 1xM20	126	24j6	50	8	27.0	7	M8	115	95j6	140	M8	3	
100	624	26	1xM25 1xM20	136	28j6	60	8	31.0	7	M10	130	110j6	160	M8	3.5	
112	697	26	1xM25 1xM20	157	28j6	60	8	31.0	7	M10	130	110j6	160	M8	3.5	
132 S	767	35	2xM32 1xM20	185	38k6	80	10	41.0	8	M12	165	130j6	200	M10	3.5	
132 M-L	842	35	2xM32 1xM20	185	38k6	80	10	41.0	8	M12	165	130j6	200	M10	3.5	
160 M	946	35	2xM32 1xM20	215	42k6	110	12	45.0	8	M16	215	180h6	250	M12	4	
160 L	946	35	2xM32 1xM20	215	42k6	110	12	45.0	8	M16	215	180h6	250	M12	4	

Versione DB, DC Version DB, DC Version DB, DC Ausführung DB, DC Versión DB, DC

Versione HB, HC Version HB, HC Version HB, HC Ausführung HB, HC Versión HB, HC

♣ 1 nella scatola morsetti, 1 sulla carcassa 1 in the terminal box, 1 on the frame

1 à l'intérieur de la boîte à bornes, 1 sur la carcasse 1 am Klemmkasten, 1 am Motorgehäuse

1 en la caja de bornes, 1 en la carcasa

Quote non impegnative Tolerances allowed Dimensions données à titre indicatif Übliche Toleranzen Cotas no vinculantes

parapioggia: normalmente presente solo nei motori autoventilati (IC411) per montaggio verticale, albero in basso rain cover: normally found only on self-ventilating motors (IC411) for vertical assembly, shaft at the bottom capot parapluie: normalement, elle n'est présente que sur les moteurs autoventilés (IC411) destinés à un montage vertical, arbre en bas Regenschutz: ist normalerweise nur bei den eigenbelüfteten Motoren (IC411) für die senkrechte Montage, Welle unten, vorhanden tapa de protección contra la lluvia: normalmente sólo está presente en los motores autoventilados (IC411) para el montaje en vertical, con el eje en la parte inferior

Dimensioni d'ingombro motori con freno ITALIANO ENGLISH Overall dimensions of motors with brakes DB FRANÇAIS Dimensions d'encombrement des moteurs à frein DC 5. DEUTSCH Abmessungen der Motoren mit Bremse IM B35 180÷315 IM B3 IM B5 5.3 ESPAÑOL Dimensiones totales de los motores con freno

Туре	Α	AA	AB	ø AC	AC1	AD	AD1	ØAF	ØAF1	AL	AL1	AL2	В	ВС	ВВ	С	0 H- 0,5	НА	HD	øΚ	L
180 M	279	71	350	394	412	326	320	242	205	223	162	482	241	25.0	340	121	180	17	506	14	1055
180 L	279	71	350	394	412	326	320	242	205	223	162	482	279	25.0	340	121	180	17	506	14	1055
200	318	75	393	394	412	346	320	242	205	230	162	481	305	27.0	360	133	200	18	546	18	1086
225 S	356	78	431	394	467	371	320	242	205	240	162	506	286	38.0	380	149	225	20	596	18	1156
225 M 4-8	356	78	431	394	467	371	320	242	205	240	162	506	311	38.0	380	149	225	20	596	18	1156
250 M 4-8	406	95	500	394	467	396	320	242	205	221	162	507	349	33.0	415	168	250	22	646	24	1157
280 S 4-8	457	90	540	394	558	548	320	320	205	316	162	618	368	80.0	550	190	280	41	828	25	1265
280 M 4-8	457	90	540	394	558	548	320	320	205	316	162	618	419	80.0	550	190	280	41	828	25	1265
315 S 4-8	508	110	590	394	558	548	320	320	205	316	162	618	406	68.5	560	216	315	41	863	27	1445
315 M 4-8	508	110	590	394	558	548	320	320	205	316	162	618	457	68.5	560	216	315	41	863	27	1445

Туре	L1	LM	AO	AO1	IEC 60423 n. x O	IEC 60423 n. x O1	AG	AG1	ØD	Е	F	GA	GD	DB	LA	ØM	ØN	ØP	S	Т
180 M	1376	1419	38	35	2xM40	1xM25	266	245	48k6	110	14	52.0	9	M16	20	300	250h6	350	18	5
180 L	1376	1419	38	35	2xM40	1xM25	266	245	48k6	110	14	52.0	9	M16	20	300	250h6	350	18	5
200	1412	1455	38	35	2xM40	1xM25	286	245	55m6	110	16	59.0	10	M20	20	350	300h6	400	18	5
225 S	1501	1544	38	35	2xM40	1xM25	311	245	60m6	140	18	64.0	11	M20	22	400	350h6	450	18	5
225 M 4-8	1501	1544	38	35	2xM40	1xM25	311	245	60m6	140	18	64.0	11	M20	22	400	350h6	450	18	5
250 M 4-8	1503	1546	38	35	2xM40	1xM25	336	245	65m6	140	18	69.0	11	M20	22	500	450h6	550	18	5
280 S 4-8	1721	1817	56	35	2xM63	1xM25	410	245	75m6	140	20	79.5	9	M20	18	500	450h6	550	18	5
280 M 4-8	1721	1817	56	35	2xM63	1xM25	410	245	75m6	140	20	79.5	9	M20	18	500	450h6	550	18	5
315 S 4-8	1901	1997	56	35	2xM63	1xM25	410	245	80m6	170	22	85.0	9	M20	22	600	550h6	660	22	6
315 M 4-8	1901	1997	56	35	2xM63	1xM25	410	245	80m6	170	22	85.0	9	M20	22	600	550h6	660	22	6

1 nella scatola morsetti del motore, 1 sulla carcassa e 1 nella scatola morsetti del freno

1 in the motor terminal box, 1 on the motor frame and 1 in the brake terminal box

1 dans la boîte à bornes du moteur, 1 sur la carcasse et 1 dans la boîte à bornes du frein

1 im Klemmenkasten des Motors, 1 auf dem Gehäuse und 1 im Klemmenkasten der Bremse

1 en la caja de bornes del motor, 1 en la carcasa y 1 en la caja de bornes del freno

Quote non impegnative Tolerances allowed Dimensions données à titre indicatif Übliche Toleranzen Cotas no vinculantes

- 6. Parti di ricambio
- 6. Spare parts
- 6. Pièces détachées
- 6. Ersatzteilliste
- 6. Piezas de repuesto

ITALIANO

FRANÇAIS

DEUTSCH

ESPAÑOL

Parti di ricambio

Spare parts

Pièces detachées

Ersatzteilliste

6. Piezas de repuesto

- Fondello esterno anteriore
- Ingrassatore anteriore
- Cuscinetto anteriore
- Scatola morsetti
- (5) Nipplo passaggio ausiliari
- Coperchio scatola morsetti
- Morsettiera
- Nipplo passaggio cavi 8
- Rotore 9
- 10 Statore avvolto
- 11 Carcassa
- 12 Scudo posteriore

- (13) Anello ritenzione grasso posteriore
- (14) Ingrassatore posteriore
- Fondello esterno posteriore 16 Calotta copriventola
- 17 Albero
- 18 Anello di tenuta anteriore
- (19) Anello ritenzione grasso anteriore
 - Scudo anteriore
 - 21 Molle di precarico
 - 22 Fondello interno anteriore
- Piedi (23)
- 24 Fondello interno posteriore

- 25 Cuscinetto posteriore
- 26 Anello di tenuta posteriore
- 27 Ventola
- Tettuccio parapioggia (28)
- 29 Scudo posteriore portafreno
- 30 Custodia freno
- Scudo custodia freno 38
- Custodia coprifreno
- 40 Coperchio scatola morsetti freno
- 41 Scatola morsetti freno
- Morsettiera freno 42
- Nipplo passaggio cavi freno

- 44 Supporto motore ventilazione assistita
- 45 Motore ventilazione assistita
- 52 Targa
- 53 Vite di messa a terra
- 54 Basetta di separazione
- 55 Freno
 - (...) = quando previsto

N.B.: la calotta copriventola (16) nei motori per miniera è saldata al tettuccio parapioggia (28)

- 1 End cap front
- (2) Grease nipple front
- 3 Front bearing
- Terminal box 4
- (5) Auxiliary connections
- Terminal box lid 6
- Terminal board
- Cable nipple 8
- 9 Rotor
- 10 Wound stator
- 11 Frame
- 12 Endshield rear

- (13) Grease sealing ring rear
- (14) Grease nipple - rear
- 15 End cap - rear
- Fan cover (cowl) 16
- 17 Shaft
- Sealing ring front 18
- Grease sealing ring front (19)
- Endshield front 20
- 21 Pre loading springs
- 22 Inner bearing cap front
- (23)Feet
- 24 Inner bearing cap - rear

- 25 Rear bearing
- 26 Sealing ring - rear
- 27 Cooling fan
- (28)Rain cap

43

- 29 NDE shield brake holder
- Brake enclosure 30
- 38 Brake shield
- 39 Brake cover enclosure
- 40 Brake terminal box cover
- 41 Brake terminal box
- 42 Brake terminal board Cable nipple brake

- 44 Forced ventilation motor support
- 45 Forced ventilation motor
- 52 Plate
- 53 Electrical earth screw
- 54 Separation base
- 55 Brake

(...) = when provided

N.B.: the fan cap (16) in the motors for mining applications is welded to the rain cover (28)

- 1 Couvercle avant
- (2) Graisseur avant
- Roulement avant 3
- 4
- Boîte à bornes (5) Dispositif pour le passage des
- auxiliaires Couvercle boîte à bornes
- 6 Bornes traversante 7
- Dispositif pour le passage des câbles
- Rotor 9
- Stator enveloppé
- 10
- 11 Carcasse 12 Flasque arrière

- Bague arrière de rétention graisse
- Graisseur arrière (14)
- Couvercle arrière 15 Capot de ventilateur 16
- Arbre 18 Bague avant d'étanchéité
- (19)Bague avant de rétention graisse
- Flasque avant 20 Ressorts de précharge 21
- Flasque intérieur avant 22

17

(23)Pattes 24 Flasque intérieur arrière

- Roulement arrière
- Baque arrière d'étanchéité
- 27 Ventilateur
- (28)Tôle parapluie
- 29 Flasque porte-frein
- 30 Carter du frein 38 Couvercle du frein
- 39 Carter de protection du frein
- Couvercle de la boîte à bornes du frein Boîte à bornes du frein
- 41
- 42 Bornier du frein Dispositif pour le passage des câble 43
- 44 Support du moteur avec ventilation assistée
- 45 Moteur avec ventilation assistée
- 52 Plaque
- 53 Vis de mise à la terre
- 54 Base de séparation
- Frein

(...) = si prévu

N.B.: le capot du ventilateur (16) dans les moteurs pour mine est soudé au capot parapluie (28)

- Äusserer Fettkammerdeckel A-Seite
- (2) Schmiernippel A-Seite
- 3 Kugellager A-Seite
- 4 Klemmkasten
- (5) Kabeldurchfürung Hilfskreise Klemmkastendeckel 6
- Klemmbrett 7
- Druckfeste Kabeldurchführung 8
- 9 Läufer 10 Gewickelter Stator
- 11 Motorgehäuse 12 Lagerschild B-Seite

- Schmierfett Schleuderring B-Seite
- Schmiernippel B-Seite (14)
- 15 Äusserer Fettkammerdeckel B-Seite
- 16 Lüfterhaube
- 17 Welle
- Dichtungsring A-Seite 18
- Schmierfett Schleuderring A-Seite (19)20
- Lagerschild A-Seite 21 Lagervorspannung
- (23)Füsse 24 Innerer Fettkammerdeckel B-Seite

Innerer Fettkammerdeckel A-Seite

- Kugellager B-Seite
- Dichtungsring B-Seite 27 Lüfterflügel
- (28)Regenschutzdach
- 29 Lagerschild B-Seite Bremsenhalter
- Kapselung der Bremse
- Deckel Bremse
- Kapselung Bremsabdeckung 39
- Deckel Bremsen-Klemmenkasten 41 Bremsen-Klemmenkasten
- 42 Bremsen-Anschlussklemmen Druckfeste Kabeldurchführung der

- 44 Träger Motor Fremdbelüftung
- 45 Motor Fremdbelüftung 52 Typenschild
- 53 Erdungsschrauben
- 54 Trennplatte 55 Bremse

(...) = wenn vorgesehen

ZUR BEACHTUNG: Bei den schlagwettergeschützten Motoren ist die Lüfterhaube (16) mit dem Regenschutzdach (28) verschweisst

- (2) Engrasador delantero
- 3 Cojinete delantero 4 Caja de bornes
- (5) Niple paso auxiliares

Tapa de la caja de bornes

Placa de bornes 8 Niple paso cables

9

11

Rotor 10 Estátor bobinado Armazón

12 Escudo trasero

- (13) Anillo retención grasa trasero
- (14) Engrasador trasero
- 17 Eje
- Anillo retención grasa delantero (19)
- 22 Fondo interno delantero
- Tapa interna trasera 24

Bremse

- 26 Anillo de retención trasero
- (28)Tapa de protección contra la lluvia
- Escudo portafrenos 29
- Tapa del freno 38
- 40 Tapa caja de bornes freno
- 41 Caia de bornes freno

- 44 Soporte motor ventilación asistida Motor ventilación asistida
- 53 Tornillo e toma a tierra 54 Base de separación Freno

45

52 Placa

(...) = cuando previsto

Nota importantes: el cárter del ventilador (16) en los motores para minas está soldado al techo para proteger de la Iluvia (28)

- 1 Tapa externa delantera
 - 15 Fondo externo trasero 16 Casquete cubre ventilador

22

- Anillo de retención delantero 18
- 20 Escudo delantero 21 Muelles de carga previa
- (23)Pies

- 25 Cojinete trasero
- 27 Ventilador
- Envolvente del freno 30
- Protector del freno
- Placa de bornes freno Niple paso cables del freno

Motori standard e per miniera

ITALIANO

Standard and mining application motors

FRANÇAIS

DEUTSCH

Moteurs standard et pour mine

Standardmotoren und schlagwettergeschützte Motoren

Motores estándares y para minas ESPAÑOL

ITALIANO ENGLISH FRANÇAIS DEUTSCH

ESPAÑOL

Parti di ricambio Motori standard e per miniera Standard and mining application motors Spare parts Moteurs standard et pour mine Pièces detachées Ersatzteilliste Standardmotoren und schlagwettergeschützte Motoren Motores estándares y para minas Piezas de repuesto

Motori con freno ITALIANO

Motors with brakes ENGLISH

Moteurs à frein FRANÇAIS

Moteurs à frein FRANÇAIS

Motoren mit Bremse DEUTSCH

ITALIANO
ENGLISH
FRANÇAIS
DEUTSCH
ESPAÑOL

Parti di ricambio Motori con freno ventilati
Spare parts Motors with ventilated brakes
Pièces detachées Moteurs à frein ventilés
Ersatzteilliste Belüftete Motoren mit Bremse
Piezas de repuesto Motores con freno ventilados

Motori con freno ventilati ITALIANO

Motors with ventilated brakes

Moteurs à frein ventilés

Belüftete Motoren mit Bremse

Motores con freno ventilados ESPAÑOL

FRANÇAIS DEUTSCH ITALIANO
ENGLISH
FRANÇAIS
DEUTSCH
ESPAÑOL

Parti di ricambio Motori con freno ventilati
Spare parts Motors with ventilated brakes
Pièces detachées Moteurs à frein ventilés
Ersatzteilliste Belüftete Motoren mit Bremse
Piezas de repuesto Motores con freno ventilados

tezza delle informazioni con- publication. tenute.

Tuttavia, anche in conseguenza della politica di continuo sviluppo e miglioramento della reserves the right to supply qualità del prodotto perseguita products which may differ da Cemp, la società si riserva il diritto e la facoltà di apportare and described in this publicamodifiche di qualsiasi genere, tion. in qualsiasi momento e senza preavviso, sia a questo documento sia ai propri prodotti.

Le descrizioni e le caratteristiche tecniche della presente should data in this publication pubblicazione non sono quindi be considered as a contractual impegnative e i dati riportati obligation. non costituiscono, in nessun caso, impegno contrattuale.

tazione è stata posta ogni cura ensure the accuracy of the documentation nous avons nischen Eigenschaften, die in se ha redactado de manera al fine di assicurare la corret- information contained in this

> Due to Cemp's policy of continuous development and improvement, the company slightly from those illustrated

Descriptions and technical features listed in this brochure may not be considered as binding. Under no circumstances

possibles.

ment et d'amélioration conti- aufgeführten technischen Da- tinuo desarrollo y mejora de nue des produits, la Société ten als rechtlich verbindlich la calidad del producto que Cemp se réserve le droit et la angesehen werden. faculté d'apporter toute modiment et sans préavis.

Les descriptifs et les caractéridans ce catalogue n'engagent die hier beschrieben sind. pas la Société.

Par conséquent, ces données ne constituent en aucun cas un engagement contractuel.

bindlich angesehen werden.

fication sur la documentation Cemp behält sich das Recht la facultad de modificar en lo et sur les produits, à tout mo- vor, ohne Mitteilung, jegliche que fuera necesario, en cual-Abweichungen und Änderun- quier momento y sin que para gen jederzeit vorzunehmen, ello medie preaviso alguno, sowohl in diesem Dokument tanto este documento como stiques techniques contenus als auch bei den Produkten, sus productos.

Nel redigere questa documen- Every care has been taken to Dans la préparation de cette Die Ausführungen und tech- La presente documentación pris le soin d'y intégrer les dieser Broschüre angegeben muy atenta para poder aseguinformations les plus exactes sind, dürfen nicht als ver- rar que las informaciones que contiene son correctas.

> Néanmoins, compte tenu de In keinem Fall können je- No obstante, como consenotre politique de développe- doch die in diesem Dokument cuencia de la política de con-Cemp pone en práctica, la sociedad se reserva el derecho y

> > Por lo tanto, las descripciones y las características técnicas indicadas en el presente documento no son vinculantes, y los datos que contiene no constituyen en ningún caso, vínculo contractual.

Cemp srl

Via Piemonte, 16 20030 Senago (Milano) - Italy Tel. +39 02 94435401 Fax +39 02 9989177 cemp@cemp.eu

Cemp France SAS

6, Avenue Victor Hugo 27320 Nonancourt - France Tél. +33 (0)2 32580381 Fax +33 (0)2 32321298 cemp-france@cemp.eu

Cemp International GmbH

Dr. Atzinger-Strasse 5 94036 Passau - Germany Tel. +49 (0)851 9662320 Fax +49 (0)851 96623213 cemp-deutschland@cemp.eu

Cemp srl - Middle East

GT3, Office 001 Jebel Ali Free Zone - Dubai - UAE Mobile: +97 155 4718198 cemp-uae@cemp.eu

Cemp srl

Via Piemonte, 16 20030 Senago (Milano) - Italy

A Regal Brand

